Skip to main content

A Fractal Study of Dielectric Breakdown in the Atmosphere

  • Chapter
Non-Linear Variability in Geophysics

Abstract

Analysis of photographs of lightning indicates that lightning has fractal geometry associated with a reproducible fractal dimension of about 1.34. Following this analysis a nonequilibrium model is presented which generates structures which are qualitatively similar to lightning observed in the atmosphere and which exhibit a fractal dimension of 1.37. The result of the model are also used to demonstrate that the observed lightning structures are most probable events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Hentschel, H. G. E., and I. Procaccia, 1983: The infinite number of generalized dimensions of fractals and strange attractors. Physica. 8D. 435–444.

    Google Scholar 

  • Lovejoy, S., D. Schertzer, and A. A. Tsonis, 1987: Functional Box Counting and Multiple Elliptical Dimensions in Rain. Science. 235. 1036–1038.

    Article  Google Scholar 

  • Lovejoy, S., D. Schertzer, and P. Ladoy, 1986: Fractal characterization of inhomogeneous geophysical measuring networks. Nature. 319.43–44.

    Article  Google Scholar 

  • Mandelbrot, B., 1983: The Fractal Geometry of Nature. Freeman and Company, New York, 461 pp.

    Google Scholar 

  • Meakin, P., 1986: A new model for biological pattern formation. J. Theor. Biol. 118.101–113.

    Article  Google Scholar 

  • Morse, D. R., J. H. Lawton, M.M. Dodson, and M.H. Williamson, 1984: Fractal dimension of vegetation and the distribution of arthropod body lengths, Nature. 314.731–733.

    Article  Google Scholar 

  • Niemeyer, L., L. Pietronero, and H. J. Wiesmann, 1984: Fractal dimension of dielectric breakdown. Phys. Rev. Lett., 52. 1033–1036.

    Article  Google Scholar 

  • Nittmann, J., and E. H. Stanley, 1986: Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature. 312.663–668.

    Article  Google Scholar 

  • Salanave, L. E., 1980: Lightning and its spectrum. University of Arizona Press, Tucson, Arizona. 136 pp.

    Google Scholar 

  • Witten, T. A., Jr., and L. M. Sander, 1981: Diffusion-Limited Aggregation, a kinetic critical phenomenon. Phys. Rev. Lett., 47, 1400–1403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tsonis, A.A. (1991). A Fractal Study of Dielectric Breakdown in the Atmosphere. In: Schertzer, D., Lovejoy, S. (eds) Non-Linear Variability in Geophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2147-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2147-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7466-7

  • Online ISBN: 978-94-009-2147-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics