Skip to main content

Physical and Acoustic Properties of Arctic Ocean Deep-Sea Sediments: Paleoclimatic Implications

  • Chapter
Geological History of the Polar Oceans: Arctic versus Antarctic

Part of the book series: NATO ASI Series ((ASIC,volume 308))

Abstract

Six sediment cores from the Eurasian Basin were studied to determine and understand climatically driven changes of Arctic Ocean basins. Detailed time control of sediments for the last 45 kyr is based on accelerator mass spectrometry (AMS) C14-dating of biogenic carbonate (N. pachyderma, left coiling). The most important results from our study are summarized as follows. From 45 to 13.5 ka low sedimentation rates prevailed (0.35 cm/kyr). They increased drastically at the transition from the last glacial to interglacial (Termination Ia, 13.5 ka) leading into high Holocene sedimentation rates (1.06 cm/kyr). Low carbonate concentrations (< 4%) prevailed from 13.5 to 9 ka at Termination I. Decreased salinities can be expected for Termination la (Zahn et al., 1985, Jones & Keigwin, 1988, Mienert et al., 1989) due to glacial meltwater influence possibly accompanied by sea ice melting. As a result of the freshwater influence, productivity of planktic foraminifers decreased and this, in turn, resulted in a drastic decrease in carbonate concentration during Termination Ia. Although carbonate concentration varies only between 0 and 9%, it distinctly changes both the compressional-wave velocity (from 1485 to 1510 m/s) and the wave attenuation (from 0.1 to 0.45 dB/m/kHz) in the sediment. Climatically driven changes in magnetic susceptibility have proved to be a valuable paleoclimatic tool for intercore correlations. Our results indicate that the same general conclusions are valid for pelagic environments of both Atlantic and Arctic Ocean basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, W. H., and L. A. Mayer: 1978, ‘Deep-sea carbonates: Acoustic reflectors and lysocline fluctuations’, Geology 6, 11–15.

    Article  Google Scholar 

  • Bloemendal, J., B. Lamb, and J. W. King: 1988, ‘Paleoenvironmental implications of rock-magnetic properties of late Quaternary sediment cores from the eastern Equatorial Atlantic’, Paleoceanography 3, 61–87.

    Article  Google Scholar 

  • Clark, D. L.: 1970, ‘Magnetic reversals and sedimentation rates in the Arctic Ocean’, Geol. Soc. Amer. Bull. 81, 3129–3134.

    Article  Google Scholar 

  • Clark, D. L., M. Andrée, W. S. Broecker, A. C. Mix, G. Bonani, H. J. Hofmann, E. Morenzoni, M. Nessi, M. Suter, and W. Wölfli: 1986, ‘Arctic Ocean chronology confirmed by accelerator 14C dating,’ Geophys. Res. Lett. 13, 319–321.

    Article  Google Scholar 

  • Curry, W. B., and G. P. Lohmann: 1986, ‘Late Quaternary carbonate sedimentation at the Sierra Leone Rise (eastern equatorial Atlantic)’, Mar. Geol. 70, 223–250.

    Article  Google Scholar 

  • Duplessy, J.-C.: 1978, ‘Isotope studies’, in J. Gribbin (ed.), Climatic Change, Cambridge University Press, Cambridge, pp. 46–67.

    Google Scholar 

  • Duplessy, J.-C., G. Delibrias, J. L. Turon, C. Pujol, and J. Duprat: 1981, ‘Deglacial warming of the northeastern Atlantic Ocean: Correlation with the paleoclimatic evolution of the European Continent’, Palaeogeogr. Palaeoclimat. Palaeoecol. 35, 121–144.

    Article  Google Scholar 

  • Duplessy, J.-C., M. Arnold, P. Maurice, E. Bard, J. Duprat, and J. Moyes: 1986, ‘Direct dating of the oxygen-isotope record of the last deglaciation by 14C accelerator mass spectrometry’, Nature 320, 350–352.

    Article  Google Scholar 

  • Grosswald, M. G.: 1980, ‘Late Weichselian ice sheet of northern Eurasia’, Quat. Res. 13, 1–32.

    Article  Google Scholar 

  • Hall, F. R., and J. W. King: 1989, ‘The rock-magnetic stratigraphy of Site 645 (Baffin Bay) from ODP Leg 105’, in S. P. Srivastava, M. A. Arthur et al. (eds.), Scientific Results ODP Leg 105, Ocean Drilling Program, College Station, pp. 843–859.

    Google Scholar 

  • Hall, F. R., J. Bloemendal, J. W. King, M. A. Arthur, and A. E. Aksu: 1989, ‘Middle to late Quaternary sediment fluxes in the Labrador Sea (ODP Leg 105, Site 646): A synthesis of rock-magnetic, oxygen-isotpic carbonate, and planktonic foraminiferal data’, in S. P. Srivastava, M. A. Arthur et al. (eds.), Scientific Results ODP Leg 105, Ocean Drilling Program, College Station, pp. 653–688.

    Google Scholar 

  • Hamilton, E. L.: 1971, ‘Elastic properties of marine sediments’, J. Geophys. Res. 76, 579–604.

    Article  Google Scholar 

  • Hamilton, E. L., R. T. Bachman, W. H. Berger, T. C. Johnson, and L. A. Mayer: 1982, ‘Acoustic and related properties of calcareous deep-sea sediments, J. Sed. Petrol. 52, 733–753.

    Google Scholar 

  • Heezen, B. C., and M. Ewing: 1963, ‘The mid-oceanic ridge’, in M. N. Hill (ed.), The Sea, Vol. 3, Wiley, New York, pp. 388–410.

    Google Scholar 

  • Honjo, S.: in press, ‘Particle fluxes and modern sedimentation in the polar Oceans’, in W. O. Smith, Jr. (ed.), Polar Oceanography, Academic Press, New York.

    Google Scholar 

  • Imbrie, J., J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, and N. J. Shackleton: 1984, ‘The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 18O record’, in A. L. Berger, J. Imbrie, J. D. Hays, G. J. Kukla, and B. Saltzman (eds.), Milankovitch and Climate, Reidel, Dordrecht, pp. 269–277.

    Google Scholar 

  • Jones, G. A., and P. Kaiteris: 1983, ‘A vacuum-gasometric technique for rapid and precise analysis of calcium carbonate in sediment soils’, J. Sed. Petrol. 53, 655–660.

    Google Scholar 

  • Jones, G. A., and L. D. Keigwin: 1988, ‘Evidence from Fram Strait (78°N) for early deglaciation’, Nature 336, 56–59.

    Article  Google Scholar 

  • Jones, G. A., A. J. T. Jull, T. W. Linick, and D. J. Donahue: in press, ‘Radiocarbon dating of deep-sea sediments: A comparison of accelerator mass spectrometer and beta-decay methods’, Radiocarbon 31.

    Google Scholar 

  • Jull, A. J. T., D. J. Donahue, A. L. Hatheway, T. W. Linick, and L. J. Toolin: 1986, ‘Production of graphite targets by deposition from CO/H2 for precision accelerator 14C measurements’, in M. Stuiver and R. S. Kra (eds.), Proc. 12th Inter. 14 C Conf., Radiocarbon 28, 191–197.

    Google Scholar 

  • Løvlie, R., B. Markussen, H. P. Sejrup, and J. Thiede: 1986, ‘Magnetostratigraphy in three Arctic Ocean sediment cores; arguments for geomagnetic excursions within oxygenisotope stage 2–3’, Phys. Earth Planet. Inter. 43, 173–184.

    Article  Google Scholar 

  • Macko, S. A., and A. E. Aksu: 1986, ‘Amino acid epimerization in planktonic foraminifera suggests slow sedimentation rates for Alpha Ridge, Arctic Ocean’, Nature 322, 730–732.

    Article  Google Scholar 

  • Mayer, L. A.: 1979, ‘Deep-sea carbonates: acoustic, physical and stratigraphic properties’, J. Sed Petrol. 49, 819–836.

    Google Scholar 

  • Mayer, L. A., K. Morau, D. J. Piper, and R. C. Courtney: 1987, ‘Long cores from Emeral Basin Nova Scotia: Physical and acoustical properties’, EOS Trans. Amer. Geophys. Union 68, 1324 (abstr.).

    Google Scholar 

  • Mienert, J.: 1986, ‘Acoustic stratigraphy in the eastern equatorial Atlantic: On the development of deep-water circulation during the last 3.5 million years’, ‘Meteor’ Forsch-Ergeb. 40C, 19–86.

    Google Scholar 

  • Mienert, J., W. B. Curry, and M. Sarnthein: 1988, ‘Sonostratigraphic records from equatorial Atlantic deep-sea carbonates: Paleoceanographic and climatic relationships’,Mar. Geol. 83, 9–20.

    Article  Google Scholar 

  • Mienert, J., and J. Bloemendal: 1989, ‘A comparison of acoustic and rock magnetic properties of equatorial Atlantic deep-sea sediments: Paleoceanographic implications’, Earth Planet. Sci. Lett. 94, 291–300.

    Article  Google Scholar 

  • Mienert, J., S. Horwege, and G. A. Jones: 1989, ‘Climatic and environmental changes in the Arctic Ocean during the late Quaternary’, EUG V 1, 186 (abstr.).

    Google Scholar 

  • Morris, T. H., D. L. Clark, and S. M. Blasco: 1985, ‘Sediments of the Lomonosov Ridge and Makarov Basin: A Pleistocene stratigraphy for the North Pole’, Geol. Soc. Amer. Bull. 96, 901–910.

    Article  Google Scholar 

  • Robinson, S. G.: 1986, ‘The Late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements’, Phys. Earth Planet. Int. 42, 22–47.

    Article  Google Scholar 

  • Sejrup, H. P., G. H. Miller, J. Brigham-Grette, R. Løvlie, and D. M. Hopkins: 1984, ‘Amino acid eperimerization implies rapid sedimentation rates in Arctic Ocean cores’, Nature 310, 772–775.

    Article  Google Scholar 

  • Shackleton, N. J., and N. D. Opdyke: 1973, ‘Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V 28-238’, Quat. Res. 3, 39–55.

    Article  Google Scholar 

  • Slota, P. J., Jr., A. J. T. Jull, T. W. Linick, and L. J. Toolin: 1987, ‘Preparation of small samples for 14C accelerator targets by catalytic reduction of CO’, Radiocarbon 29, 303–306.

    Google Scholar 

  • Stow, D. A. V., and J. P. B. Lovell: 1979, ‘Contourites: Their recognition in modern and ancient sediments’, Earth Sci. Rev. 14, 251–291.

    Article  Google Scholar 

  • Thiede, J., and Shipboard Scientific Party: 1988. ‘Scientific cruise report of Arctic Expedition ARK IV/3’, Ber. Polarforschung 43, 237 p.

    Google Scholar 

  • Wilson, W. D.: 1960, ‘Speed of sound in sea water as a function of temperature, pressure, and salinity’, J. Acoust. Soc. Amer. 32, 641.

    Article  Google Scholar 

  • Witte, W. K., and D. V. Kent: 1988, ‘Revised magnetostratigraphies confirm sedimentation rates in Arctic Ocean cores’, Quat. Res. 29, 43–53.

    Article  Google Scholar 

  • Zahn, R., B. Markussen, and J. Thiede: 1985, ‘Stable isotope data and depositional environments in the late Quaternary Arctic Ocean’, Nature 314, 433–435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mienert, J., Mayer, L.A., Jones, G.A., King, J.W. (1990). Physical and Acoustic Properties of Arctic Ocean Deep-Sea Sediments: Paleoclimatic Implications. In: Bleil, U., Thiede, J. (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. NATO ASI Series, vol 308. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2029-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2029-3_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7410-0

  • Online ISBN: 978-94-009-2029-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics