Skip to main content

The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway

  • Chapter
Geo-Platinum 87

Abstract

The distribution of noble metals, Ni and Cu in mafic and ultramafic rocks is thought to be controlled by sulphides, chromite, olivine and platinum-group minerals (PGM). One method for presenting noble metal, Ni and Cu data focuses on the sulphide control by recalculating the data to 100% sulphides and presenting the data chondrite normalized. The relative importance of the influence of sulphides, chromite, olivine and PGM on the noble metals, Ni and Cu is examined here using two alternative methods.

Firstly, the metals can be plotted in the order: Ni, Os, Ir, Rn, Rh, Pt, Pd, Au and Cu and mantle normalized. The noble metals have a much higher partition coefficient into sulphides than Ni or Cu. Therefore, if sulphides have segregated from the magma or are retained in the mantle during partial melting, the magma and all rocks that subsequently form from it will be depleted in noble metals relative to Ni and Cu and the metal patterns will have an overall trough shape. Conversely any rocks containing these sulphides will be enriched in noble metals relative to Ni and Cu and the metal patterns will have an arch shape (characteristic of Pt reefs). Chromite-rich rocks tend to be enriched in the elements Os, Ir and Ru relative to the magma from which they form, therefore if chromite crystallizes from a magma or is retained in the mantle during partial melting, the magma and any rocks that subsequently form from it will be depleted in Os, Ir and Ru and the metal pattern will have a positive slope from Os to Pd, flat from Pd to Cu and have a positive Ni anomaly. The rocks containing cumulate chromite will be enriched in Os, Ir and Ru relative to the other elements and the metal patterns have an overall negative slope with a down turn at Ni (as seen in podiform chromitites). Olivine concentrates Ni and under some conditions Ir. Therefore if olivine crystallizes from a magma or is retained in the mantle during partial melting, Ni and Ir will be depleted in the magma and in any rocks that subsequently form from it. The metal patterns have an overall positive slope from Os to Pd, flat from Pd to Cu and no Ni anomaly. The cumulate will be enriched in Ni and Ir and tend to have a flat metal pattern (e.g. in dunites from komatiites and ophiolites).

A second approach to presenting noble metal, Ni and Cu data is suggested because while the effects of sulphide, chromite and olivine control can be seen on the metal patterns it is easier to distinguish these effects visually using metal ratio diagrams, Pd/Ir versus Ni/Cu and Ni/Pd versus Cu/Ir.

These two approaches are useful petrogenetic and exploration tools. Rocks which have trough-shaped metal patterns formed from magmas which were depleted in noble metals, possibly by sulphide segregation. These rocks do not make good exploration targets although there is the potential of a noble-metal deposit stratigraphically below them. Rocks which are not enriched or depleted in Ni and Cu relative to the noble metals formed from a magma that has not segregated sulphides and therefore a noble metal deposit could lie stratigraphically above these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agiorgitis, G. & Wolf, R. (1977). The distribution of platinum, palladium and gold in Greek chromites. Chem. Erde., 36, 349–51.

    Google Scholar 

  • Agiorgitis, G. & Wolf, R. (1978). Aspects of osmium, ruthenium and iridium contents in some Greek chromites. Chem. Geol., 23, 267–72.

    Article  Google Scholar 

  • Alapieti, T. & Lahtinen, J. (1986). Stratigraphy, petrology and platinum-group element mineralization of the early Proterozoic Penikat layered intrusion. Econ. Geol., 81, 1126–37.

    Article  Google Scholar 

  • Amosse, J., Allibert, M., Fischer, W. & Piboule, M. (1987). Etude de l’influence es fugacities d’oxygene et de soufre sur la differentiation des platinoides dans les magmas ultramafiques. Resultats preliminaries. C.R. Acad. Sci. Paris, t304 Seri II, 19, 1183–5.

    Google Scholar 

  • Ballhaus, G. G. & Stumpfl, E. F. (1986). Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contrib. Mineral. Petrol., 94, 193–204.

    Article  Google Scholar 

  • Barnes, Sarah-Jane (1987). Unusual nickel and copper to noble-metal ratios from the Råna Layered Intrusion, northern Norway. Norsk geol. Tidsskrift, 67, 215–32.

    Google Scholar 

  • Barnes, Sarah-Jane & Naldrett, A. J. (1987). Fractionation of the platinum-group elements concentrations in the Alexo Mine komatiite, Abitibi Greenstone Belt, northern Ontario. Geol. Mag., 123, 515–24.

    Article  Google Scholar 

  • Barnes, Sarah-Jane & Naldrett, A. J. (1987). Fractionation of the platinum-group elements and gold in some komatiites of the Abitibi greenstone belt, northern Ontario. Econ. Geol., 82, 165–83.

    Article  Google Scholar 

  • Barnes, Sarah-Jane, Naldrett, A. J. & Gorton, M. P. (1985). The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol., 53, 303–23.

    Article  Google Scholar 

  • Barnes, Stephen J. & Naldrett, A. J. (1985). Geochemistry of the J-M reef of the Stillwater Complex, Minneapolis Adit Area. I Sulfide chemistry and sulfide-olivine equilibrium. Econ. Geol., 80, 627–45.

    Article  Google Scholar 

  • Barnes, Stephen J., Coats, C. A. J. & Naldrett, A. J. (1982). Petrogenesis of Proterozoic nickel sulfide-komatiite association: the Katiniq Sill, Ungava, Quebec. Econ. Geol., 77, 413–29.

    Article  Google Scholar 

  • Becker, R. & Agiorgitis, D. (1978). Iridium, osmium and palladium distribution in rocks of the Troodos Complex, Cyprus. Chem. Erde., 37, 302–6.

    Google Scholar 

  • Bennett, M. C., Emblin, S. R., Robins, B. & Yeo, W. J. A. (1986). High-temperature ultramafic complexes in the north Norwegian Caledonides: I-Regional setting and field relationships. Norges. Geol. Unders. Bull., 405, 1–40.

    Google Scholar 

  • Boyd, R. & Nixon, F. (1985). Norwegian nickel deposits: A review. Geol. Surv. Finland, Bull., 333, 364–94.

    Google Scholar 

  • Brugmann, G. E., Arndt, N. T., Hofmann, A. W. & Tobschall, H.-J. (1985). Precious-metal abundances in komatiites and komatiitic basalts: implications for the genesis of PGE-bearing magmatic sulfide deposits. Can. Mineral., 23, 293–321.

    Google Scholar 

  • Bury, K. V. (1975). Statistical Models in Applied Sciences. John Wiley, New York, 625 pp.

    Google Scholar 

  • Campbell, I. H. & Barnes, Stephen J. (1984). A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Can. Mineral., 22, 151–60.

    Google Scholar 

  • Campbell, I. H. & Naldrett, A. J. (1979). The influence of silicate: sulfide ratio on the geochemistry of the magmatic sulfides. Econ. Geol., 74, 1503–5.

    Article  Google Scholar 

  • Chang, P.-K., Yu, C. M. & Chiang, C. Y. (1973). Mineralogy and occurrence of platinum-group elements in chromium deposits of northwest China. Geochimica, 2, 76–85 (in Chinese).

    Google Scholar 

  • Chou, C. L., Shaw, D. M. & Crocket, J. H. (1983). Siderophile trace elements in the earth’s oceanic crust and upper mantle. J. Geophys. Res., 88, A507–518.

    Article  Google Scholar 

  • Clark, T. (1985). Precious metals in New Quebec. Ministere de l’Energie et des Res Quebec. Document de promotion.

    Google Scholar 

  • Cowden, A., Donaldson, M. J., Naldrett, A. J. & Campbell, I. H. (1985). Platinum-group elements in komatiite-hosted Fe-Ni-Cu sulfide deposits at Kambalda, western Australia. Econ. Geol., 81, 1226–34.

    Article  Google Scholar 

  • Crocket, J. H. (1981). Geochemistry of the platinum-group elements. Can. Inst. Min. Metall., Spec. Iss., 23, 47–64.

    Google Scholar 

  • Crocket, J. H. & Chyi, L. L. (1972). Abundances of Pd, Ir, Os and Au in an alpine ultramafic pluton. 24th Inter. Geol. Cong., Section 10, 202–9.

    Google Scholar 

  • Crocket, J. H. & MacRae, W. E. (1986). Platinum-group element distribution in komatiitic and tholeiitic volcanic rocks from Munro Township, Ontario. Econ. Geol., 81, 1242–52.

    Article  Google Scholar 

  • Crocket, J. H. & Teruta, Y. (1977). Palladium, iridium and gold contents of mafic and ultramafic rocks drilled from the Mid-Atlantic Ridge, leg 37, Deep Sea Drilling Project. Can. J. Earth Sci., 14, 777–84.

    Article  Google Scholar 

  • Czamanske, G. K., Haffty, J. & Nabbs, S. W. (1981). Pt, Pd and Rh analyses and beneficiation of mineralized mafic rocks from the La Perouse Layered Gabbro, Alaska. Econ. Geol., 76, 2001–11.

    Article  Google Scholar 

  • Davies, G. & Tredoux, M. (1985). The platinum-group element and gold contents of the marginal rocks and sills of the Bushveld Complex. Econ. Geol., 80, 838–48.

    Article  Google Scholar 

  • Dillon-Leitch, H. C. H., Watkinson, D. H. & Coats, C. (1986). Distribution of platinum-group elements in the Donaldson West Deposit, Cape Smith Fold Belt, Quebec. Econ. Geol., 81, 1147–59.

    Article  Google Scholar 

  • Economou, M. I. & Naldrett, A. J. (1984). Sulfides associated with podiform bodies of chromite at Tsangli, Eretria, Greece. Mineral. Deposita, 19, 289–97.

    Article  Google Scholar 

  • Fominykh, V. G. & Khvostova, V. P. (1970). Platinum content of Ural dunite. Doklady Akad. Nauk. SSSR, 191, 443–5.

    Google Scholar 

  • Gain, S. B. (1985). The geological setting of the platiniferous UG-2 chromitite layer on the farm Maandagshhoek, Eastern Bushveld. Econ. Geol., 80, 925–43.

    Article  Google Scholar 

  • Gain, S. B. & Mostert, A. B. (1982). The geological setting of the platinoid and base metal sulfide mineralization in the Platreef of the Bushveld Complex north of Potgietersrus. Econ. Geol., 17, 1395–1404.

    Article  Google Scholar 

  • Gee, D. G., Guezou, J.-C., Roberts, D. & Wolff, F. C. (1985). The central-southern part of the Scandinavian Caledonides. In The Caledonide Orogen-Scandinavia and Related Areas, ed. D. Gee & B. A. Sturt. John Wiley, New York, pp. 109–33.

    Google Scholar 

  • Govindaraju, K. (1984). Compilation of working values and sample descriptions of 170 international reference samples of mainly silicate rocks and minerals. Geostandards Newsletter, VIII, 3–39.

    Article  Google Scholar 

  • Green, A. H. & Naldrett, A. J. (1981). The Langmuir volcanic peridotite-associated nickel deposits: Canadian equivalent of the Western Australian occurrences. Econ. Geol., 76, 1503–23.

    Article  Google Scholar 

  • Grønlie, A. (in press). Platinum-group minerals of the Lillefjellklumpen, nickel-copper deposit, Norway. Norsk. Geol. Tidsskr.

    Google Scholar 

  • Gunn, A. G., Leake, R. C. & Styles, M. T. (1985). Platinum-group element mineralization in the Unst ophiolite, Shetland. Mineral Reconnaissance Programme Rep. British Geol. Surv., Vol. 73, 117 pp.

    Google Scholar 

  • Hakli, T. A., Hanninen, E., Vuorelainen, Y. & Papunen, H. (1976). Platinum-group minerals in the Hitura nickel deposit, Finland. Econ. Geol., 71, 1206–13.

    Article  Google Scholar 

  • Hamlyn, P. R., Keays, R. R., Cameron, W. E., Warrington, E., Crawford, A. J. & Waldon, H. M. (1985). Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas. Geochim. Cosmochim. Acta, 49, 1797–1811.

    Article  Google Scholar 

  • Hertogen, J., Janssen, M. J. & Palme, H. (1980). Trace elements in ocean ridge basalt glasses: implications for fractionation during mantle evolution and petrogenesis. Geochim. Cosmochim. Acta, 44, 2125–43.

    Article  Google Scholar 

  • Hoffman, E. L., Naldrett, A. J., Van Loon, J. C. & Hancock, R. G. V. (1979). The noble-metal content of ore in the Levack West and Little Stobie mines, Ontario. Can. Mineral., 17, 437–51.

    Google Scholar 

  • Hulbert, L. J. & von Gruenewaldt, G. (1982). Nickel, copper and platinum mineralization in the lower zone of the Bushveld Complex, south of Potgietererus. Econ. Geol., 77, 1296–1306.

    Article  Google Scholar 

  • Irivine, T. N. & Sharpe, M. (1982). Source rock compositions and depths of origin of Bushveld and Stillwater magmas. Carnegie Inst. Washington Yrbk, 81, 294–303.

    Google Scholar 

  • Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Dreibus, G., Spettel, B., Lorenz, V. & Wanke, H. (1979). The abundance of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proc. 10th, Lunar Planet. Sci. Conf., NASA, Houston, pp. 2031–50.

    Google Scholar 

  • Kaminskiy, F. V., Frantsesson, Ye. V. & Khvostova, P. (1975). First information on platinum metals (Pt, Pd, Rh, Ir, Ru, Os) in kimberlitic rocks. Doklady Akad. Nauk. SSSR, 219, 190–3.

    Google Scholar 

  • Keays, R. R. (1982). Palladium and iridium in komatiites and associated rocks: application to petrogenetic problems. In Komatiites, ed. N. T. Arndt & E. G. Nisbet. Allen, London, pp. 435–57.

    Google Scholar 

  • Keays, R. R. & Campbell, I. H. (1981). Precious metals in the Jimberlana Intrusion, Western Australia: Implications for genesis of platiniferous ores in layered intrusions. Econ. Geol., 76, 1118–41.

    Article  Google Scholar 

  • Keays, R. R., Ross, J. R. & Woolrich, P. (1981). Precious metals in volcanic peridotite-associated nickel sulphide deposits in western Australia II: Distribution within the ores and host rocks at Kambalda. Econ. Geol., 76, 1645–74.

    Article  Google Scholar 

  • Keays, R. R., Nickel, E. H., Groves, D. I. & McGoldrick, P. J. (1982). Iridium and palladium as discriminants of volcanic-exhalative hydrothermal and magmatic nickel sulfide mineralization. Econ. Geol., 77, 1535–47.

    Article  Google Scholar 

  • Khvostova, V. P., Golvnya, S. V., Chernysheva, N. V. & Bukhanova, A. I. (1976). Distribution of the platinum-group metals in chromite ores and ultramafic rocks of the Ray-Iz massif (Polar Urals). Geochem. Int., 13, 35–9.

    Google Scholar 

  • Krill, A. G., Bergh, S., Mearns, E. W., Often, M., Olerud, S., Olesen, O., Sanstad, J. S., Siedlecka, A. & Solli, A. (1985). New isotopic dates from the Precambrian crystalline rocks of Finnmark. Norges Geol. Unders. Bull., 403, 37–54.

    Google Scholar 

  • Lahtinen, J. (1985). PGE-bearing copper-nickel occurrences in the marginal series of the early Proterozoic Koillismaa Layered Intrusion, northern Finland. Geol. Surv. Finland, Bull., 333, 165–79.

    Google Scholar 

  • Latysh, I. K. & Buturlinov, V. N. (1970). Platinum-group metals in igneous rocks of the border zone between Donbas and Azov Region. Geochem. Int., 1, 620–3.

    Google Scholar 

  • Leblanc, M. & Johan, Z. (1986). Un nouveau type de mineralisation platinifere: exemple des filons a arseniures de nickel et chromite du massif lherzolitique des Beni-Bousera (Maroc). C.R. Acad. Sci. Paris, t303, Serie II, 2, 163–6.

    Google Scholar 

  • Lee, C. & Tredoux, M. (1986). Platinum-group element abundances in the lower and middle critical zones of the Eastern Bushveld Complex. Econ. Geol., 81, 1087–96.

    Article  Google Scholar 

  • Lesher, C. M. & Keays, R. R. (1984). Metamorphically and hydrothermally mobilized Fe-Ni-Cu sulphides at Kambalda, Western Australia. In Sulphide Deposits in Mafic and Ultramafic rocks, ed. D. L. Buchanan & M. J. Jones. Institute of Mining and Metallurgy, London, pp. 62–9.

    Google Scholar 

  • Lightfoot, P. C., Naldrett, A. J. & Hawkesworth, C. J. (1984). The geology and geochemistry of the Waterfall Gorge section of the Insizwa Complex with particular reference to the origin of the nickel-sulfide deposits. Econ. Geol., 79, 1857–79.

    Article  Google Scholar 

  • McCallum, M. E., Lovacks, R. R., Carlson, R. R., Cooley, E. F. & Docrye, T. A. (1976). Platinum metals associated with hydrothermal copper ores of the New Rambler mine, Medicine Bow Mountains, Wyoming. Econ. Geol., 71, 1429–50.

    Article  Google Scholar 

  • McLaren, C. H. & De Villiers, J. P. R. (1982). The platinum-group chemistry and mineralogy of the UG-2 chromite layer of the Bushveld Complex. Econ. Geol., 77, 1348–66.

    Article  Google Scholar 

  • Massey, N. W. D., Crocket, J. H. & Kabir, A. (1983). Ir in Keweenawan basalts of the Mamainse Point Formation, Ontario. Can. Mineral., 21, 655–60.

    Google Scholar 

  • Mitchell, R. H. & Keays, R. R. (1981). Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites, Implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim. Cosmochim. Acta, 45, 2425–42.

    Article  Google Scholar 

  • Morgan, J. (1986). Ultramafic xenoliths: Clues to earth’s late accretionary history. J. Geophys. Res., 91 (B12), 12375–87.

    Article  Google Scholar 

  • Morgan, J. W., Wanderless, G. A., Petrie, R. K. & Irving, A. J. (1981). Composition of the earth’s upper mantle-I. Siderophile trace elements in ultramafic nodules. Tectonophysics, 75, 47–67.

    Article  Google Scholar 

  • Naldrett, A. J. (1981). Platinum-group element deposits. Can. Inst. Min. Metall., Spec. Iss., 23, 197–232.

    Google Scholar 

  • Naldrett, A. J. & Barnes, S.-J. (1986). The fractionation of the platinum-group elements with special reference to the composition of sulphide ores. Fortsch. Mineral. Petrol., 64, 113–33.

    Google Scholar 

  • Naldrett, A. J., Hoffman, E. L., Green, A. H., Chou, C-L. & Naldrett, S. R. (1979). The composition of Ni-sulfide ores, with particular reference to their content of PGE and Au. Can. Mineral., 17, 403–15.

    Google Scholar 

  • Naldrett, A. J., Innes, D., Gorton, M. P. & Sowa, J. (1982). Compositional variations within and between five Sudbury ore deposits. Econ. Geol., 77, 1519–34.

    Article  Google Scholar 

  • Nilsson, L.-P. (1980). Undersøkelsel av ultramafiske bergarter og krommalm pàstrekeningen Ráros-Feragen. Norges Geol. Unders. Rep. 1650/33A.

    Google Scholar 

  • Oftedahl, C. (1980). The geology of Norway. Norges Geol. Unders. Bull., 54, 3–114.

    Google Scholar 

  • Often, M. (1985). The early proterozoic Karasjok greenstone belt, Norway; a preliminary description of lithology, stratigraphy and mineralization. Norges Geol. Unders. Bull., 403, 75–88.

    Google Scholar 

  • Ohnenstetter, D., Watkinson, D., Jones, P. C. & Talkington, R. (1986). Cryptic compositional variations in laurite and enclosing chromite from the Bird River Sill, Manitoba. Econ. Geol., 81, 1159–68.

    Article  Google Scholar 

  • Oshin, I. O. & Crocket, J. H. (1982). Noble metals in the Thetford mines ophiolite, Quebec, Canada. Part I Distribution of gold, iridium, platinum and palladium in the ultramafic and gabbroic rocks. Econ. Geol., 11, 1556–70.

    Article  Google Scholar 

  • Oshin, I. O. & Crocket, J. H. (1986). Noble metals in the Thetford mines ophiolite, Quebec, Canada. Part II Distribution of gold, silver, iridium, platinum and palladium in the Lac de l’Est volcano-sedimentary section. Econ. Geol., 81, 931–45.

    Article  Google Scholar 

  • Page, N. J & Talkington, R. W. (1984). Palladium, platinum, rhodium, ruthenium and iridium in peridotites and chromites from ophiolite complexes in Newfoundland. Can. Mineral., 22, 137–49.

    Google Scholar 

  • Page, N. J, Rowe, J. J. & Haffty, J. (1972). Platinum metals lateral variations of platinum, palladium and rhodium in the Stillwater Complex, Montana. Econ. Geol., 61, 915–23.

    Article  Google Scholar 

  • Page, N. J, Myers, J. S. & Haffty, J. (1980). Platinum, palladium and rhodium in Fiskenaesset Complex, Southwest Greenland. Econ. Geol., 75, 907–15.

    Article  Google Scholar 

  • Page, N. J, Cassard, D. & Haffty, J. (1982a). Palladium, platinum, rhodium, ruthenium and iridium in chromitites from the Massif du Sud and Tiebaghi Massif, New Caledonia. Econ. Geol., 11, 1571–7.

    Article  Google Scholar 

  • Page, N. J, Pallister, J. S., Brown, M. A., Smewing, J. D. & Haffty, J. (1982b). Palladium, platinum, rhodium, iridium and ruthenium in chromite-rich rocks from the Samail ophiolite, Oman. Can. Mineral., 20, 537–48.

    Google Scholar 

  • Page, N. J, Von Gruenewaldt, G., Haffty, J. & Aruscavage, P. J. (1982c). Comparison of platinum, palladium and rhodium distribution in some layered intrusions with special reference to the late differentiates (upper zone) of the Bushveld Complex, South Africa. Econ Geol., 11, 1405–18.

    Article  Google Scholar 

  • Page, N.J, Aruscavage, P. J. & Haffty, J. (1983). Platinum-group elements in rocks from the Voikar-Synínsky Ophiolite Complex, Polar Urals USSR. Mineral. Deposita, 18, 444–55.

    Article  Google Scholar 

  • Page, N. J, Zientek, M. L., Czamanske, G. K. & Foose, M. P. (1985). Sulfide mineralization in the Stillwater complex and underlying rocks. Montana Bureau Mines and Geol. Spec. Pub. 92, pp. 93–6.

    Google Scholar 

  • Page, N. J, Singer, D., Moring, B., Carlson, A., McDade, J. & Wilson, S. A. (1986). Platinum-group element resources in podiform chromitites from California and Oregon. Econ. Geol., 81, 1261–71.

    Article  Google Scholar 

  • Papunen, H. (1986). Platinum-group elements in Svecokarelian nickel-copper deposits in Finland. Econ. Geol., 81, 1236–41.

    Article  Google Scholar 

  • Papunen, H. & Koskinen, J. (1985). Geology of the Kotalahti nickel-copper ore. Geol. Surv. Finland Bull., 333, 229–41.

    Google Scholar 

  • Paul, D., Crocket, J. H. & Nixon, P. H. (1979). Abundances of palladium, iridium and gold in kimberlites and associated nodules. Proc. 2nd Int. Kimberlite Conf., Vol. 1. American Geophysical Union. Washington, D.C., pp. 272–9.

    Google Scholar 

  • Pedersen, R.-B. (in preparation) The Karmøy Ophiolite Complex.

    Google Scholar 

  • Pedersen, R.-B., Furnes, H. & Dunning, G. (submitted). Norwegian ophiolite complexes reconsidered. Geology.

    Google Scholar 

  • Prichard, H. M., Potts, P. J. & Neary, C. R. (1981). Platinum-group element minerals in the Unst chromite, Shetland Isles. Inst. Mining Metall., 90, 186–87

    Google Scholar 

  • Prichard, H. M., Potts, P. J. & Neary, C. R. (1984). Platinum and gold in the Shetland ophiolite. Mining J., 303 (7772), 77.

    Google Scholar 

  • Prichard, H. M., Neary, C. & Potts, P. J. (1986). Platinum-group minerals in the Shetland ophiolite. In Metallogeny of Basic and Ultrabasic Rocks, ed. M. J. Gallagher, R. A. Ixer, C. R. Neary & H. M. Prichard. Inst. Min. Metals, London, pp. 395–414.

    Google Scholar 

  • Rajamani, V. & Naldrett, A. J. (1978). Partitioning of Fe, Co, Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Econ. Geol., 73, 82–93.

    Article  Google Scholar 

  • Razin, L. V. & Khomenko, G. A. (1969). Accumulation of osmium, ruthenium and other platinum group metals in chrome spinel in platinum bearing dunites. Geochem. Int., 6, 546–57.

    Google Scholar 

  • Razin, L. V., Khvostov, V. J. & Noviko, V. A. (1965). Platinum metals in the essential and accessory minerals of ultramafic rocks. Geochem. Int., 2, 118–31.

    Google Scholar 

  • Redman, B. A. & Keays, R. R. (1985). Archaean basic volcanism in the eastern goldfields province, Yilgarn Block, Western Australia. Precambrian Res., 30, 113–52.

    Article  Google Scholar 

  • Robins, B. & Gardner, P. M. (1975). The magmatic evolution of the Seiland province and Caledonian plate boundaries in northern Norway. Earth Planet. Sci. Lett., 26, 167–78.

    Article  Google Scholar 

  • Rowell, W. F. & Edgar, A. D. (1986). Platinum-group element mineralization in a hydrothermal Cu-Ni sulfide occurrence, Rathbun Lake, Northeastern Ontario. Econ. Geol., 81, 1272–7.

    Article  Google Scholar 

  • Sharpe, M. (1982). Noble metals in the marginal rocks of the Bushveld Complex. Econ. Geol., 11, 1286–95.

    Article  Google Scholar 

  • Smirnov, M. E. (1966). The structure of Noril’sk nickel-bearing intrusions and the genetic types of their sulfide ores. Ail-Union Sci. Res. Inst. Mineral. Raw Materials (VIMS) Moscow (in Russian).

    Google Scholar 

  • Steele, T. W., Levin, J. & Copelowitz, I. (1975). The preparation and certification of a reference sample of a precious metal ore. Nat. Inst. Met. Rep. 1696.

    Google Scholar 

  • Stockman, H. W. (1982). Noble metals in the Ronda and Josephine peridotites. Unpublished, Ph.D., thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Stockman, H. W. & Hlava, P. F. (1984). Platinum-group minerals in Alpine chromites from southwestern Oregon. Econ. Geol., 79, 491–508.

    Article  Google Scholar 

  • Sturt, B. & Roberts, D. (1978). Caledonides of northern Norway. In Caledonian-Appalachian orogen of the North Atlantic Region, ed. P. Scheuk. Geol. Surv. Can. Paper 78-13, pp. 17–24.

    Google Scholar 

  • Sun, Shen-Su (1982). Chemical composition and origin of the earth’s primitive mantle. Geochim. Cosmochim. Acta, 46, 179–92.

    Article  Google Scholar 

  • Talkington, R. W. & Lipin, B. (1986). Platinum-group minerals in chromite seams of the Stillwater Complex, Montana. Econ. Geol., 81, 1179–86.

    Article  Google Scholar 

  • Talkingon, R. W. & Watkinson, D. H. (1984). Trends in the distribution of the precious metals in the Lac des Iles Complex, northwestern Ontario. Can. Mineral., 22, 125–36.

    Google Scholar 

  • Talkington, R. W., Watkinson, D. H., Whittaker, P. J. & Jones, P. C. (1984). Platinum-group minerals and other solid inclusions in chromite of ophiolite complexes: Occurrence and petrological significance. Tschermaks. Mineral. Petrol. Mitt., 32, 285–301.

    Article  Google Scholar 

  • Thompson, J. F. H., Nixon, F. & Siversten, R. (1980). The geology of Vakkerlien nickel prospect Kvikne, Norway. Geol. Surv. Finland Bull., 52, 3–22.

    Google Scholar 

  • Tolmachev, I. I., Kalinin, S. K., Terekhovich, S. L., Syromyatnikon, N. G. & Zaravnyayeva, V. K. (1971). Distribution of Pd, Pt and Au in the Riphean and Cambrian igneous rocks of the Boshchekulsh region, northeastern Kazakhstan. Geochem. Int., 8, 194–9.

    Google Scholar 

  • Tredoux, M., Davies, G., Lindsay, N. M. & Sellschop, J. P. F. (1986). The influence of temperature on the geochemistry of the platinum-group elements and gold. Geocongress 86 extended abstracts, pp. 625–8. Geological Society of South Africa, Johannesburg.

    Google Scholar 

  • White, R. W., Motta, J. & De Araujo, V. A. (1971). Platiniferous chromitite in the Trocantins Complex, Niquelandia, Goias, Brazil. US Geol. Surv. Prof. Pap., 750-D, pp. 26–33.

    Google Scholar 

  • Wilson, A. H. & Prendergast, M. D. (1987). The Great Dyke of Zimbabwe-an Overview. Guidebook for the 5th Magmatic Sulphides Field Trip pp. 23–8. Geological Society of Zimbabwe, Harare.

    Google Scholar 

  • Zientek, M. L., Foose, M. P. & Mei, L. (1986). Palladium, platinum and rhodium contents of rocks near the lower margin of the Stillwater Complex, Montana. Econ. Geol., 81, 1169–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Barnes, SJ. et al. (1988). The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway. In: Prichard, H.M., Potts, P.J., Bowles, J.F.W., Cribb, S.J. (eds) Geo-Platinum 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1353-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1353-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7102-4

  • Online ISBN: 978-94-009-1353-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics