Skip to main content

The Origin of Virions and Virocells: The Escape Hypothesis Revisited

  • Chapter
  • First Online:
Viruses: Essential Agents of Life

Abstract

Three types of hypotheses have been proposed to explain the origin of viruses: the “virus first” hypothesis in which viruses originated before cells, the “regression hypothesis”, in which cells or proto-cells evolved into virions by regressive evolution and the “escape hypothesis”, in which fragments of cellular genomes (either from prokaryotes or eukaryotes) became infectious. We will try to show how accumulating data in structural biology combined to new virus definitions allow rejecting the first two hypotheses, favouring a new version of the escape hypothesis. The first viruses probably originated in a world of cells already harbouring ribosomes (ribocells), but well before the Last Universal Common Ancestor of modern cells (LUCA). Several viral lineages originated independently by transformation of ribocells into virocells (cells producing virions). Viral genomes originated from ancestral chromosomes of ribocells and virions from micro-compartments, nucleoprotein complexes or membrane vesicles present in ancient ribocells. Notably, this updated version of the escape hypothesis suggests a working program to tackle the question of virus origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:1–23

    Article  Google Scholar 

  • Baker ML, Jiang W, Rixon FJ, Chiu W (2005) Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79:14967–14970

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241

    PubMed  CAS  Google Scholar 

  • Bamford DH (2003) Do viruses form lineages across different domains of life? Res Microbiol 154:231–236

    Article  PubMed  CAS  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  PubMed  CAS  Google Scholar 

  • Bandea CI (1983) A new theory on the origin and the nature of viruses. J Theor Biol 105:591–602

    Article  PubMed  CAS  Google Scholar 

  • Bos L (1999) Beijerinck‘s work on tobacco mosaic virus: historical context and legacy. Philos Trans R Soc Lond B Biol Sci 354:675–685

    Article  PubMed  CAS  Google Scholar 

  • Brüssow H (2009) The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond B Biol Sci 364:2263–2274

    Article  PubMed  Google Scholar 

  • Burroughs AM, Iyer LM, Aravind L (2007) Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn 3:48–65

    Article  PubMed  CAS  Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    Article  PubMed  CAS  Google Scholar 

  • Cherwa JE, Fane BA (2011) Microviridae: microviruses and gokushoviruses. In: Encyclopedia of life sciences. Wiley, Chichester. doi:doi:10.1002/9780470015902.a0000781.pub2

    Google Scholar 

  • Claverie JM (2006) Viruses take center stage in cellular evolution. Genome Biol 7:110

    Article  PubMed  Google Scholar 

  • Colson P, de Lamballerie X, Fournous G, Raoult D (2012) Reclassification of giant viruses composing a fourth domain of life in the New order megavirales. Intervirology 55(5):321–332

    Article  PubMed  Google Scholar 

  • Diemer GS, Stedman KM (2012) A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct 7:13

    Article  PubMed  CAS  Google Scholar 

  • Ellen AF, Albers SV, Huibers W, Pitcher A, Hobel CF, Schwarz H, Folea M, Schouten S, Boekema EJ, Poolman B, Driessen AJ (2009) Proteomic analysis of secreted membrane vesicles of archaeal sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79

    Article  PubMed  CAS  Google Scholar 

  • Filée J, Forterre P, Sen-Lin T, Laurent J (2002) Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol 54:763–773

    Article  PubMed  Google Scholar 

  • Flügel RM (2010) The precellular scenario of genovirions. Virus Genes 40:151–154

    Article  PubMed  Google Scholar 

  • Forterre P (1992) New hypotheses about the origin of viruses, prokaryotes and eukaryotes. In: Trân Thanh Vân JK, Mounolou JC, Shneider J and Mc Kay C (eds) Frontiers of Life, éditions Frontières, Gif-sur-Yvette-France, pp 221–234. Accessible at http://archaea.u-psud.fr/evol.html

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (2005) The two ages of the RNA world, and the transition to the DNA world, a story of viruses and cells. Biochimie 87:93–803

    Article  Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (2010) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chimi. doi:doi:10.1016/j.crci.2010.06.007

  • Forterre P (2012) The virocell concept. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0023264]

    Google Scholar 

  • Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Gribaldo S (2007) The origin of modern terrestrial life. HFSP J 1:156–168

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Krupovic M (2012) LUCA: its contemporaries and their viruses. In: Koonin EV (ed) LUCA. Springer-Verlag, Berlin GmbH, Heidelberg

    Google Scholar 

  • Forterre P, Prangishvili D (2009a) The origin of viruses. Res Microbiol 160:466–472

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Prangishvili D (2009b) The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 1178:65–77

    Article  PubMed  CAS  Google Scholar 

  • Gaudin M, Gauliard E, Le Normand P, Marguet E, Forterre P (2012) Hyperthermophilic archaea produce vesicles that can transfer DNA. Environ Microbiol Report. doi:10.1111/j.1758-2229.2012.00348.x

    Google Scholar 

  • Gould SJ (1996) Full house: the spread of excellence from plato to darwin. Three Rivers Press, New York

    Book  Google Scholar 

  • Goulet A, Blangy S, Redder P, Prangishvili D, Felisberto-Rodrigues C, Forterre P, Campanacci V, Cambillau C (2009) Acidianus filamentous virus 1 coat proteins display a helical fold spanning the filamentous archaeal viruses lineage. Proc Natl Acad Sci USA 106:21155–21160

    Article  PubMed  CAS  Google Scholar 

  • Goulet A, Vestergaard G, Felisberto-Rodrigues C, Campanacci V, Garrett RA, Cambillau C, Ortiz-Lombardía M (2010) Getting the best out of long-wavelength X-rays: de novo chlorine/sulfur SAD phasing of a structural protein from ATV. Acta Crystallogr D Biol Crystallogr 66:304–308

    Article  PubMed  Google Scholar 

  • Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508

    Article  PubMed  CAS  Google Scholar 

  • Jalasvuori M, Bamford JK (2008) Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph 38:165–181

    Article  PubMed  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2009) On the origin of cells and viruses: primordial virus world scenario. Ann N Y Acad Sci 1178:47–64

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 9:1–29

    Article  Google Scholar 

  • Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19

    Article  PubMed  CAS  Google Scholar 

  • Krupovic M, Bamford DH (2010) Order to the viral universe. J Virol 84:12476–12479

    Article  PubMed  CAS  Google Scholar 

  • Krupovic M, Bamford DH (2011) Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr Opin Virol 1:118–124

    Article  PubMed  CAS  Google Scholar 

  • Krupovic M, Ravantti J, Bamford DH (2009) Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol Biol 9:112

    Article  PubMed  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184

    Article  PubMed  CAS  Google Scholar 

  • La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033

    Google Scholar 

  • Legendre M, Arslan D, Abergel C, Claverie JM (2012) Genomics of megavirus and the elusive fourth domain of life. Commun Integr Biol 5:102–106

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537

    Article  PubMed  Google Scholar 

  • Luria SE, Darnell JE (1967) General virology. Wiley, New York

    Google Scholar 

  • Lwoff A (1967) Principles of classification and nomenclature of viruses. Nature 215:13–14

    Article  PubMed  CAS  Google Scholar 

  • Mansy SS, Szostak JW (2009) Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol 74:47–54

    Article  PubMed  CAS  Google Scholar 

  • Meckes DG, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85:12844–12854

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7:306–311

    PubMed  CAS  Google Scholar 

  • Ogata H, Claverie JM (2007) Unique genes in giant viruses: regular substitution pattern and anomalously short size. Genome Res 17:1353–1361

    Article  PubMed  CAS  Google Scholar 

  • Pietilä MK, Atanasova NS, Manole V, Liljeroos L, Butcher SJ, Oksanen HM, Bamford DH (2012) Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea. J Virol 86:5067–5079

    Article  PubMed  Google Scholar 

  • Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 22:1444–1455

    Article  PubMed  CAS  Google Scholar 

  • Prangishvili D, Krupovic M (2012) A new proposed taxon for double-stranded DNA viruses, the order “ligamenvirales”. Arch Virol 157:791–795

    Article  PubMed  CAS  Google Scholar 

  • Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the archaea: a unifying view. Nat Rev Microbiol 4:837–848

    Article  PubMed  CAS  Google Scholar 

  • Raoult D, Forterre P (2008) Redefining viruses: lessons from mimivirus. Nat Rev Microbiol 6:315–319

    Article  PubMed  CAS  Google Scholar 

  • Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2 megabase genome sequence of mimivirus. Science 306:1344–1350

    Article  PubMed  CAS  Google Scholar 

  • Renesto P, Abergel C, Decloquement P, Moinier D, Azza S, Ogata H, Fourquet P, Gorvel JP, Claverie JM (2006) Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J Virol 80:11678–11685

    Article  PubMed  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    Article  PubMed  CAS  Google Scholar 

  • Rohwer F, Youle M (2011) Consider something viral in your search. Nat Rev Microbiol 9:308–309

    Article  CAS  Google Scholar 

  • Roine E, Kukkaro P, Paulin L, Laurinavicius S, Domanska A, Somerharju P, Bamford DH (2010) New, closely related haloarchaeal viral elements with different nucleic acid types. J Virol 84:3682–3689

    Article  PubMed  CAS  Google Scholar 

  • Ryan RF (2009) Virolution. Harper Collins, London

    Google Scholar 

  • Sapp J (2005) The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol Mol Biol Rev 69:292–305

    Article  PubMed  CAS  Google Scholar 

  • Schrum JP, Zhu TF, Szostak JW (2010) In: Atkin JF, Gesteland RF, Cech TR (eds) The origin of cellular life: RNA worlds. Cold Spring Harbour Laboratory Press, New York, pp 51–62

    Google Scholar 

  • Soler N, Marguet E, Verbavatz JM, Forterre P (2008) Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order thermococcales. Res Microbiol 159:390–399

    Article  PubMed  CAS  Google Scholar 

  • Speir JA, Johnson JE (2012) Nucleic acid packaging in viruses. Curr Opin Struct Biol 22:65–71

    Article  PubMed  CAS  Google Scholar 

  • Suttle C (2005) Crystal ball; the virosphere: the greatest biological diversity on earth and driver of global process. Environ Microbiol 7:481–482

    Article  PubMed  Google Scholar 

  • Takeuchi N, Hogeweg P, Koonin EV (2011) On the origin of DNA genomes: evolution of the division of labor between template and catalyst in model replicator systems. PLoS Comput Biol 7(3):e1002024

    Article  PubMed  CAS  Google Scholar 

  • Temin HM (1971) The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J Natl Cancer Inst 46(2):463–7

    Google Scholar 

  • Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262:698–710

    Article  PubMed  Google Scholar 

  • Wadhwani P, Reichert J, Bürck J, Ulrich AS (2012) Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 41:177–187

    Article  PubMed  CAS  Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Forterre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Forterre, P., Krupovic, M. (2012). The Origin of Virions and Virocells: The Escape Hypothesis Revisited. In: Witzany, G. (eds) Viruses: Essential Agents of Life. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4899-6_3

Download citation

Publish with us

Policies and ethics