Skip to main content

Monitoring, Modelling and Forecasting of the Pollen Season

  • Chapter
  • First Online:
Allergenic Pollen

Abstract

The section about monitoring covers the development of phenological networks, remote sensing of the season cycle of the vegetation, the emergence of the science of aerobiology and, more specifically, aeropalynology, pollen sampling instruments, pollen counting techniques, applications of aeropalynology in agriculture and the European Pollen Information System. Three data sources are directly related with aeropalynology: phenological observations, pollen counts and remote sensing of the vegetation activity. The main future challenge is the assimilation of these data streams into numerical pollen forecast systems. Over the last decades consistent monitoring efforts of various national networks have created a wealth of pollen concentration time series. These constitute a nearly untouched treasure, which is still to be exploited to investigate questions concerning pollen emission, transport and deposition. New monitoring methods allow measuring the allergen content in pollen. Results from research on the allergen content in pollen are expected to increase the quality of the operational pollen forecasts.

In the modelling section the concepts of a variety of process-based phenological models are sketched. Process-based models appear to exhaust the noisy information contained in commonly available observational phenological and pollen data sets. Any additional parameterisations do not to improve model quality substantially. Observation-based models, like regression models, time series models and computational intelligence methods are also briefly described. Numerical pollen forecast systems are especially challenging. The question, which of the models, regression or process-based models is superior, cannot yet be answered.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-4881-1_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFEDA:

French Association for Ragweed Study

ANN:

Artificial Neural Networks

ARIMA:

Autoregressive Integrated Moving Average

AVHRR:

Advanced Very High Resolution Radiometer

CART:

Classification and Regression Trees

COST725:

COST Action 725: Establishing a European Phenological Data Platform for Climatological Applications

CAgM:

Commission for Agrometeorology

DEM:

Digital Elevation Model

DWD:

Deutscher Wetterdienst

EAN:

European Aeroallergen Network

ELISA:

Enzyme-linked Immunosorbent Assay

EUMETNET:

The Network of European Meteorological Services

GIMMS:

Global Inventory Modeling and Mapping Studies

IC:

Computational Intelligence

IAA:

International Association for Aerobiology

IBP:

International Biological Programme

INERIS:

Industrial Environment and Risks National Institute

IPG:

International Phenological Garden

Landsat TM:

Landsat Thematic Mapper, Satellite

LUT:

Look Up Table

MODIS:

Moderate Resolution Imaging Spectroradiometer

NDVI:

Normalised Difference Vegetation Index

NHMS:

National Hydrometeorological Services

NOAA:

National Oceanic and Atmospheric Administration

PCR:

Polymerase Chain Reaction

PEP725:

Pan European Phenological Database

PM:

Particulate Matter

RMSE:

Root Mean Square Error

SPOT:

Satellite Pour l’Observation de la Terre

SOM:

Self-Organising Maps

SVMs:

Support Vector Machines

TSM:

Temperature Sum Model

UM:

Use and Management of Biological Resources

WCDMP:

World Climate Data and Monitoring Programme

WCP:

World Climate Programme

WIBS:

Wide-Issue Bioaerosol Spectrometer

WMO:

World Meteorological Organisation

References

  • Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., & Scheifinger, H. (2002). Changes in European spring phenology. International Journal of Climatology, 22, 1727–1738.

    Google Scholar 

  • Aizenberg, V., Reponen, T., Grinshpun, S. A., & Willeke, K. (2000). Performance if Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. American Industrial Hygiene Association Journal, 61, 855–864.

    CAS  Google Scholar 

  • Alba, F., & Díaz de la Guardia, C. (1998). The effect of air temperature on the starting dates of the Ulmus, Platanus and Olea pollen season in the SE Iberian Peninsula. Aerobiologia, 14, 191–194.

    Google Scholar 

  • Alcalá, A. R., & Barranco, D. (1992). Prediction of flowering time in olive for the Córdoba Olive collection. HortScience, 27(11), 1205–1207.

    Google Scholar 

  • Alcazar, P., Carinanos, P., de Castro, C., Guerra, F., Moreno, C., Dominguez Vilchez, E., & Galán, C. (2004). Airborne plane tree (Platanus hispanica) pollen distribution in the city of Cordoba, south-western Spain and possible implications on pollen allergy. Journal of Investigational Allergology and Clinical Immunology, 14(3), 238–243.

    CAS  Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.

    CAS  Google Scholar 

  • Antepara, I., Fernandez, J. C., Gamboa, P., Jauregui, I., & Miguel, F. (1995). Pollen allergy in the Bilbao area (European Atlantic seaboard climate): Pollination forecasting methods. Clinical and Experimental Allergy, 25, 133–140.

    CAS  Google Scholar 

  • Aono, Y., & Kazui, K. (2008). Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. International Journal of Climatology, 28, 905–914. doi:10.1002/joc.1594.

    Google Scholar 

  • Arizmendi, C. M., Sanchez, J. R., Ramos, N. E., & Ramos, G. I. (1993). Time-series prediction with neural nets – applications to airborne pollen forecasting. International Journal of Biometeorology, 37(3), 139–144.

    Google Scholar 

  • Autio, J., & Hicks, S. (2004). Annual variations in pollen deposition and meteorological conditions on the fell Aakenusrunturi in northern Finland: Potential for using fossil pollen as a climate proxy. Grana, 43, 31–47.

    Google Scholar 

  • Aznarte, J. L., Nieto Lugilde, D., Benítez, J. M., Alba Sánchez, F., & de Linares Fernández, C. (2007). Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Systems with Applications, 32, 1218–1225.

    Google Scholar 

  • Badeck, F. W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., & Sitch, S. (2004). Responses of spring phenology to climate change. New Phytologist, 162(2), 295–309.

    Google Scholar 

  • BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. Aylesford: The British Aerobiology Federation. 1995. ISBN 0-9525617-0-0.

    Google Scholar 

  • Bertin Technologies (2007). Continuous cyclonic air sampler for outdoor air monitoring. http://www.coriolis-airsampler.com/resources/fichiers/coriolis/CoriolisDelta.pdf. Accessed 5 October/2010.

  • Bonton, P., Boucher, A., Thonnat, M., Tomczak, R., Hidalgo, P. J., Belmonte, J., & Galán, C. (2001). Colour image in 2D and 3D microscopy for the automation of pollen rate measurement. Image Analysis and Stereology, 20, 527–532.

    Google Scholar 

  • Boucher, A., Hidalgo, P. J., Thonnat, M., Belmonte, J., Galán, C., Bonton, P., & Tomczak, R. (2002). Development of a semi-automatic system for pollen recognition. Aerobiologia, 18, 195–201.

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time-series analysis: Forecasting and control. Upper Saddle River, NJ: Prentice-Hall International.

    Google Scholar 

  • Bringfelt, B., Engstrom, I., & Nilsson, S. (1982). An evaluation of some models to predict airborne pollen concentration from meteorological conditions in Stockholm, Sweden. Grana, 21, 59–64.

    Google Scholar 

  • Bryant, W. M., Jr. (1989). Yearbook of science and future (pp. 92–111). Chicago: Encyclopaedia Britannica, Inc.

    Google Scholar 

  • Buters, J. T., Weichenmeier, I., Ochs, S., Pusch, G., Kreyling, W., & Boere, A. J. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65, 850–858.

    CAS  Google Scholar 

  • Carinanos, P., Emberlin, J., Galán, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia, 16, 339–346.

    Google Scholar 

  • Chen, C., Hendriks, E. A., Duin, R. P., Reiber, J. H. C., Hiemstra, P. S., de Weger, L. A., & Stoel, B. C. (2006). Feasibility study for an automatic recognition system for three relevant allergenic pollen, grass, birch and mugwort. Aerobiologia, 22, 275–284.

    Google Scholar 

  • Chmielewski, F.-M. (2008). The international phenological gardens. In J. Nekovar, E., Koch, E., Kubin, P., Nejedlik, T., Sparks, & F. Wielgolaski (Eds.), The History and current status of plant phenology in Europe. COST Action 725 (182 p.).Brussels: COST Office.

    Google Scholar 

  • Chuine, I. (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337–347.

    CAS  Google Scholar 

  • Chuine, I., & Belmonte, J. (2004). Improving prophylaxis for pollen allergies: Predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana, 43, 65–80.

    Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperature zone trees using simulated annealing. Plan, Cell and Environment, 21, 455–466.

    Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1999). Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling. Plant Cell and Environment, 22, 1–13.

    Google Scholar 

  • Chuine, I., Belmonte, J., & Mignot, A. (2000). A modelling analysis of the genetic variation of phenology between tree populations. Journal of Ecology, 80, 561–570.

    Google Scholar 

  • Chuine, I., Kramer, K., & Hänninen, H. (2003). Plant development models. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (p. 564). Dordrecht/Boston/London: Kluwer Academic Publishers.

    Google Scholar 

  • Chytry, M., & Tichy, L. (1998). Phenological mapping in a topographically complex landscape by combining field survey with an irradiation model. Applied Vegetation Science, 1, 225–232.

    Google Scholar 

  • Clary, J., Savé, R., Biel, C., & de Herralde, F. (2004). Water relations in competitive interactions of Mediterranean grasses and shrubs. Annals of Applied Biology, 144(2), 149–155.

    Google Scholar 

  • Clot, B. (1998). Forecast of the Poaceae pollination in Zurich and Basel (Switzerland). Aerobiologia, 14, 267–268.

    Google Scholar 

  • Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17, 25–29.

    Google Scholar 

  • Comtois, P., Alcázar, P., & Neron, D. (1999). Pollen count statistics and its relevance to precision. Aerobiologia, 15, 19–28.

    Google Scholar 

  • Cour, P. (1974). Nouvelles techniques de détection des flux et retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et spores XVI, 1, 103–141.

    Google Scholar 

  • Cox, C. S., & Wathes, C. M. (1995). Bioaerosol handbook (621 p.). Boca Raton, FL: Lewis Publisher.

    Google Scholar 

  • Crepinsek, Z., Kaifez-Bogataj, L., & Bergant, K. (2006). Modelling of weather variability effect on phytophenology. Ecological Modelling, 194, 256–265.

    Google Scholar 

  • Cristofolini, F., & Gottardini, E. (2000). Concentration of airborne pollen of Vitis vinifera L. and yield forecast: A case study at S. Michele all’Adige, Trento, Italy. Aerobiologia, 16, 125–129.

    Google Scholar 

  • Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., & Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. International Journal of Biometeorology, 49, 139–145.

    Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.

    CAS  Google Scholar 

  • Davies, R. R., & Smith, L. P. (1973). Forecasting the start and severity of the hay fever season. Clinical Allergy, 3, 263–267.

    CAS  Google Scholar 

  • Degaudenzi, M. E., & Arizmendi, C. M. (1998). Wavelet based fractal analysis of airborne pollen. Physical Review E, 59(2), 6569–6573.

    Google Scholar 

  • De Linares, C., Nieto-Lugilde, D., Alba, F., Díaz de la Guardia, C., Galán, C., & Trigo, M. M. (2007). Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in S Spain. Clinical & Experimental Allergy, 37(1), 125–132.

    Google Scholar 

  • De Linares, C., Días de la Guardia, C., Nieto-Lugilde, D., & Alba, F. (2010). Airborne study of grass allergen (Lol p 1) in different-sized particles. International Archives of Allergy and Immunology, 152(1), 49–57.

    Google Scholar 

  • DeLurgio, S. A. (1998). Forecasting principles and applications. New York: McGraw-Hill.

    Google Scholar 

  • Demokritou, P., Kavouras, I. G., Ferguson, S. T., & Koutrakis, P. (2002). Development of a high volume cascade impactor for toxicological and chemical characterisation studies. Aerosol Science and Technology, 36, 925–933.

    CAS  Google Scholar 

  • Dominguez, E., Galán, C., Villamandos, F., & Infante, F. (1991). Handling and evaluation of the data from the aerobiological sampling. Monografías REA/EAN, 1, 131–141.

    Google Scholar 

  • Driessen, M., & Moelands, M. (1985). Estimation of the commencement of the grass pollen season and its prediction by means of the phenological method. Acta Botanica Neerlandica, 34, 131. Abstract.

    Google Scholar 

  • Driessen, M., Van Herpen, A., Moelands, M., & Spiekma, M. (1989). Prediction of the start of the grass pollen season for the western part of the Netherlands. Grana, 28, 37–44.

    Google Scholar 

  • Emberlin, J., & Baboonian, C. (1995). The development of a new method for sampling airborne particles for immunological analysis. Paper presented at XVI European Congress of Allergy and Clinical Immunology, ECACI 95 (pp. 39–43). Madrid: Monduzzi, Bologna.

    Google Scholar 

  • Emberlin, J., Savage, M., & Woodman, R. (1993a). Annual variations in Betula pollen seasons in London 1961–1990. Grana, 32, 359–363.

    Google Scholar 

  • Emberlin, J., Savage, M., & Jones, S. (1993b). Annual variations in grass pollen seasons in London 1961–1990: Trends and forecast models. Clinical and Experimental Allergy, 23, 911–918.

    CAS  Google Scholar 

  • Emberlin, J., Jones, S., Bailey, J., Caulton, E., Corden, J., Dubbets, S., Evans, J., McDonagh, N., Millington, W., Mullins, J., Russel, R., & Spencer, T. (1994). Variation in the start of the grass pollen season at selected sites in the United Kingdom. 1987–1992. Grana, 33, 94–99.

    Google Scholar 

  • Emberlin, J., Mullins, J., Corden, J., Jones, S., Millington, W., Brooke, M., & Savage, M. (1999). Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clinical and Experimental Allergy, 29, 347–356.

    CAS  Google Scholar 

  • Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51, 181–191.

    Google Scholar 

  • Erbas, B., Chang, J. H., Dharmage, S., Ong, E. K., Hyndman, R., Newbigin, E., & Abramson, M. (2007). Do levels of airborne grass pollen influence asthma hospital admissions? Clinical and Experimental Allergy, 37(11), 1641–1647.

    CAS  Google Scholar 

  • Estrella, N., Menzel, A., Kramer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: Analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51, 49–59.

    Google Scholar 

  • Férnández-González, D., Valencia-Barrera, R. M., Vega, A., Díaz de la Guardia, C., Trigo, M. M., Cariñanos, P., Guardia, A., Pertiñez, C., & Rodríguez-Rajo, F. J. (1999). Analysis of grass pollen concentrations in the atmosphere of several Spanish sites. Pollen, 10, 123–132.

    Google Scholar 

  • Fiorina, A., Scordamaglia, A., Guerra, L., & Passalacqua, G. (2003). Aerobiologic diagnosis of Brassicaceae-induced asthma. Allergy, 58, 829–830.

    CAS  Google Scholar 

  • Fotiou, C., Damialis, A., Krigas, N., Halley, J. M., & Vokou, D. (2011). Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: Impacts of environmental factors. International Journal of Biometeorology, 55, 35–50.

    Google Scholar 

  • Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example form Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.

    Google Scholar 

  • Frenguelli, G. (1998). The contribution of aerobiology to agriculture. Aerobiologia, 14, 95–100.

    Google Scholar 

  • Frenguelli, G., & Bricchi, E. (1998). The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia, 14, 39–44.

    Google Scholar 

  • Frenguelli, G., Bricchi, E., Romano, B., Mincigrucci, G., & Spieksma, F. Th. M. (1989). A predictive study on the beginning of the pollen season for Gramineae and Olea europaea L. Aerobiologia, 5, 64–70.

    Google Scholar 

  • Galán, C., Emberlin, J., Dominguez-Vilches, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Cordoba, Spain and London, UK. Grana, 34, 189–198.

    Google Scholar 

  • Galán, C., Fuillerat, M. J., Comtois, P., & Dominguez-Vilches, E. (1998). A predictive study of Cupressaceae pollen season onset, severity, maximum value and maximum value date. Aerobiologia, 14, 195–199.

    Google Scholar 

  • Galán, C., Alcazar, P., Cariñanos, P., García-Mozo, H., & Dominguez-Vilches, E. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology, 43, 191–195.

    Google Scholar 

  • Galán, C., García-Mozo, H., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2001a). The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. International Journal of Biometeorology, 45(1), 8–12.

    Google Scholar 

  • Galán, C., Carinanos, P., García-Mozo, H., Alcazar, P., & Dominguez-Vilches, E. (2001b). Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. International Journal of Biometeorology, 45, 59–93.

    Google Scholar 

  • Galán, C., Vazquez, L., García-Mozo, H., & Dominguez-Vilches, E. (2004). Forecasting olive (Olea europea) crop yield based on pollen emission. Field Crops Research, 86, 43–51.

    Google Scholar 

  • Galán, C., García-Mozo, H., Vazquez, L., Ruiz-Valenzuela, L., Díaz de la Guardia, C., & Trigo-Perez, M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several places of Andalusia region and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184–188.

    Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish Aerobiology Network (REA) management and quality manual. Cordoba: Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.

    Google Scholar 

  • Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Domínguez-Vilches, E. (2008). Modelling olive (Olea europaea L.) crop yield in Andalusia Region, Spain. Agronomy Journal, 100(1), 98–104.

    Google Scholar 

  • García-Mozo, H., Galán, C., Gomez-Casero, M. T., & Dominguez-Vilches, E. (2000). A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Cordoba (South West Spain). Grana, 39, 194–199.

    Google Scholar 

  • García-Mozo, H., Hidalgo, P. J., Galán, C., & Gomez-Casero, M. T. (2001). Catkin frost damage in Mediterranean cork-oak (Quercus suber L.). Israel Journal of Plant Sciences, 49, 41–47.

    Google Scholar 

  • García-Mozo, H., Galán, C., Aira, M. J., Belmonte, J., Díaz de la Guardia, C., Fernández, D., Gutierrez, A. M., Rodriguez, F. J., Trigo, M. M., & Dominguez-Vilches, E. (2002). Modelling start of oak pollen season in different climatic zones in Spain. Agricultural and Forest Meteorology, 110, 247–257.

    Google Scholar 

  • García-Mozo, H., Galán, C., Jato, V., Belmonte, J., Díaz de la Guardia, C., Fernández, D., Gutiérrez, M., Aira, M. J., Roure, J. M., Ruiz, L., Trigo, M. M., & Domínguez-Vilches, E. (2006). Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine, 13, 209–224.

    Google Scholar 

  • García-Mozo, H., Perez-Badía, R., & Galán, C. (2007a). Aerobiological and meteorological factors influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia, 24(1), 13–18.

    Google Scholar 

  • García-Mozo, H., Gómez-Casero, M. T., Dominguez-Vilches, E., & Galán, C. (2007b). Influence of pollen emission and weather-related factors on variations in holm-oak (Quercus ilex subsp. ballota) acorn production. Environmental and Experimental Botany, 61, 35–40.

    Google Scholar 

  • García-Mozo, H., Chuine, I., Aira, M. J., Belmonte, J., Bermejo, D., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Rodríguez-Rajo, J., Ruiz, L., Trigo, M. M., Tormo, R., Valencia, R., & Galán, C. (2008). Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.

    Google Scholar 

  • García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Jato, V., Silva, I., Trigo, M. M., Valencia, R., & Chuine, I. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agriculture and Forest Meteorology, 149, 256–262.

    Google Scholar 

  • Gerad-Peeters, A. (1998). Cumulative temperatures for prediction of the beginning of ash (Fraxinus excelsior L.) pollen season. Aerobiologia, 14, 375–381.

    Google Scholar 

  • Goldberg, C., Buch, H., Moseholm, L., & Weeke, E. V. (1988). Airborne pollen records in Denmark, 1977–1986. Grana, 27, 209–217.

    Google Scholar 

  • Govindaraju, D. R. (1988). The relationship between dispersal ability and levels of gene flow in plants. Oikos, 52, 31–35.

    Google Scholar 

  • Graham, J. A. H., Pavlicek, P. K., Sercombe, J. K., Xavier, M. L., & Tovey, E. R. (2000). The nasal air sampler: A device for sampling inhaled aeroallergens. Annals of Allergy, Asthma, & Immunology, 84, 599–604.

    CAS  Google Scholar 

  • Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of Pm10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 40(7), 1216–1230.

    CAS  Google Scholar 

  • Guyot, G., Gugon, D., & Riom, J. (1989). Factors affecting the spectral response of forest canopies: A review. Geocarta International, 3, 43–60.

    Google Scholar 

  • Halley, J. M., & Inchausti, P. (2004). The increasing importance of 1/f-noises as models of ecological variability. Fluctuation and Noise Letters, 4, R1–R26.

    Google Scholar 

  • Hänninen, H. (1995). Effects of climatic change on trees from cool and temperate regions: An ecophyisological approach to modelling of budburst phenology. Canadian Journal of Botany, 73, 183–199.

    Google Scholar 

  • Haykin, S. (1999). Neural networks, a comprehensive foundation. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 3, 3–19.

    Google Scholar 

  • Hidalgo, P. J., Mangin, A., Galán, C., Hembise, O., Vazquez, L. M., & Sanchez, O. (2002). An automated system for surveying and forecasting Olea pollen dispersion. Aerobiologia, 18, 23–31.

    Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.

    Google Scholar 

  • Høgda, K. A., Karlsen, S. R., Solheim, I., Tømmervik, H., & Ramfjord, H. (2003). The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Paper presented at geoscience and remote sensing symposium, 2002. IGARSS’02. IEEE International, 6, 3299–3301.

    Google Scholar 

  • Holben, B. N. (1986). Characteristics of maximum-value composite images for temporal AVHRR data. International Journal of Remote Sensing, 7, 1435–1445.

    Google Scholar 

  • Hudson, I. L., Kim, S. W., & Keatley, M. R. (2010). Modelling the flowering of four Eucalypt species using new mixture transition distribution models. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: Methods for environmental and climate change analysis. Dordrecht/Heidelberg/London/New York: Springer. 521 p.

    Google Scholar 

  • Huynen, M., Menne, B., Behrendt, H., Bertollini, R., Bonini, S., Brandao, R., Brown-Fährlander, C., Clot, B., D’Ambrosio, C., De Nuntiis, P., Ebi, K. L., Emberlin, J., Orbanne, E. E., Galán, C., Jäger, S., Kovats, S., Mandrioli, P., Martens, P., Menzel, A., Nyenzi, B., Rantio Lehtimäki, A., Ring, J., Rybnicek, O., Traidl-Hoffmann, T., Van Vliet, A., Voigt, T., Weiland, S., & Wickman, M. (2003). Phenology and human health: Allergic disorders. Report of a WHO meeting, Rome, Italy.

    Google Scholar 

  • Iglesias, I., Rodriguez-Rajo, F. J., & Mendez, J. (2007). Behavior of Platanus hispanica pollen, an important spring aeroallergen in northwestern Spain. Journal of Investigational Allergology and Clinical Immunology, 17(3), 145–156.

    CAS  Google Scholar 

  • Ihne, E. (1885). Karte der Aufblühzeit von Syringa vulgaris in Europa. Botanisches Centralblatt, 21, 85–88, 116–121, 150–155.

    Google Scholar 

  • Jato, V., Frenguelli, G., Rodríguez, F. J., & Aira, M. J. (2000). Temperature requirements of Alnus pollen in Spain. Grana, 39, 240–245.

    Google Scholar 

  • Jeanneret, F., & Rutishauser, T. (2010). Phenology for topoclimatological surveys and large-scale mapping. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: Methods for environmental and climate change analysis. Dordrecht/Heidelberg/London/New York: Springer. 521 p.

    Google Scholar 

  • Kapyla, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141.

    Google Scholar 

  • Karatzas, K., & Kaltsatos, S. (2007). Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory, 15(10), 1310–1319.

    Google Scholar 

  • Karlsen, S. R., Elvebakk, A., Høgda, K. A., & Johansen, B. (2006). Satellite based mapping of the growing season and bioclimatic zones in Fennoscandia. Global Ecology and Biogeography, 15, 416–430.

    Google Scholar 

  • Karlsen, S. R., Solheim, I., Beck, P. S. A., Høgda, K. A., Wielgolaski, F. E., & Tømmervik, H. (2007). Variability of the start of the growing season in Fennoscandia, 19822002. International Journal of Biometeorology, 51, 513–524. doi:10.1007/s00484-007-0091-x.

    Google Scholar 

  • Karlsen, S. R., Ramfjord, H., Høgda, K. A., Johansen, B., Danks, F. S., & Brobakk, T. E. (2009a). A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia, 25, 15–25.

    Google Scholar 

  • Karlsen, S. R., Høgda, K. A., Ramfjord, H., Brobakk, T. E., & Johansen, B. (2009b). Use of satellite data in near real-time monitoring of the birch flowering in Norway. Paper presented at the 12th Nordic Symposium on Aerobiology, Copenhagen, Denmark, August 28–30.

    Google Scholar 

  • Kawashima, S., & Takahashi, Y. (1995). Modelling and simulation of mesoscale dispersion processes for airborne cedar pollen. Grana, 34, 142–150.

    Google Scholar 

  • Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., & Nakamura, K. (2007). An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment, 41, 7987–7993.

    CAS  Google Scholar 

  • Kinnear, P. R., & Gray, C. D. (1999). SPSS for Windows Made Simple. Padstow: T.J. International.

    Google Scholar 

  • Koch, E. (2010). Global framework for data collection – data bases, data availability, future networks, online databases. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: Methods for environmental and climate change analysis. Dordrecht: Springer. 522 p.

    Google Scholar 

  • Koch, E., Dittmann, E., Lipa, W., Menzel, A., & van Vliet, A. (2005). COST 725 Establishing a European phenological data platform for climatological purposes. Annalen der Meteorologie 41(2), 554–558. DWD.

    Google Scholar 

  • Koch, E., Demarée, G., Lipa, W., Zach, S., & Zimmermann, K. (2008). History of international phenology networks. In J. Nekovar, E. Koch, E. Kubin, P. Nejedlik, T. Sparks, & F.-E. Wielgolaski (Eds.), The history and current status of plant phenology in Europe – COST Action 725: Establishing a European Data Platform for Climatological Purposes. Sastamala: Vammalan Kirjapaino Oy, COST Office. ISBN 978-951-40-2091-9.

    Google Scholar 

  • Kramer, K. (1994). A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant, Cell and Environment, 17, 367–377.

    Google Scholar 

  • Kramer, K. (1995). Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming. Plant, Cell and Environment, 18, 93–104.

    Google Scholar 

  • Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., & Cawley, G. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37(32), 4539–4550.

    CAS  Google Scholar 

  • Laaidi, M. (2001a). Forecasting the start of the pollen season of Poaceae: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45(1), 1–7.

    CAS  Google Scholar 

  • Laaidi, M. (2001b). Regional variations in the pollen season of Betula in Burgundy: Two models for predicting the start of the pollination. Aerobiologia, 17, 247–254.

    Google Scholar 

  • Laaidi, M., Thibaudon, M., & Besancenot, J.-P. (2003). Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). International Journal of Biometeorology, 48, 65–73.

    Google Scholar 

  • Landsmeer, S. H., Hendriks, E. A., de Weger, L. A., Reiber, J. H., & Stoel, B. C. (2009). Detection of pollen grains in multifocal optical microscopy images of air samples. Microscopy Research and Technique, 72, 424–430.

    Google Scholar 

  • Levetin, E., Rogers, C. A., & Hall, S. A. (2000). Comparison of pollen sampling with a Burkard Spore Trap and a Tauber Trap in a warm temperate climate. Grana, 39, 294–302.

    Google Scholar 

  • Lillesand, T. M., & Kiefer, R. (1994). Remote sensing and image interpretation (3rd ed.). New York: Wiley.

    Google Scholar 

  • Linkosalo, T. (1999). Regularities and patterns in the spring phenology of some boreal trees. Silva Fennica, 33, 237–245.

    Google Scholar 

  • Linkosalo, T. (2000). Mutual regularity of spring phenology of some boreal tree species: Predicting with other species and phenological models. Canadian Journal of Forest Research, 30, 667–673.

    Google Scholar 

  • Linkosalo, T., Häkkinen, R., & Hänninen, H. (2006). Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 26, 1165–1172.

    Google Scholar 

  • Linkosalo, T., Lappalainen, H. K., & Hari, P. (2008). A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Phyisology, 28, 1873–1882.

    Google Scholar 

  • Linkosalo, T., Häkkinen, R., Terhivuo, J., Tuomenvirta, H., & Hari, P. (2009). The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology, 149(3–4), 453–461.

    Google Scholar 

  • Linkosalo, T., Ranta, H., Oksanen, A., Siljamo, P., Luomajoki, A., Kukkonen, J., & Sofiev, M. (2010). A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology, 150, 1579–1584.

    Google Scholar 

  • Litschauer, R. (2003). Untersuchungen zum Reproduktionspotential im Bergwald. FBVA, 130, 79–85.

    Google Scholar 

  • Makinen, Y. (1981). Random sampling in the study of microscopic slides. Reports from the Aerobiological Laboratory, University of Turku, 5, 27–43.

    Google Scholar 

  • Makra, L., Juhasz, M., Borsos, E., & Beczi, R. (2004). Meteorological variables connected with airborne ragweed pollen in southern Hungary. International Journal of Biometeorology, 49, 37–47.

    CAS  Google Scholar 

  • Mandrioli, P. (1990). The Italian Aeroallergen Network. Sampling and counting method. Aerobiologia, 6, 5–7.

    Google Scholar 

  • Mandrioli, P., & Ariatti, A. (2001). Aerobiology: Future course of action. Aerobiologia, 17, 1–10.

    Google Scholar 

  • Marletto, V., Puppi Branzi, G., & Sirotti, M. (1992). Forecasting flowering dates of lawn species with air temperatures: Application boundaries of the linear approach. Aerobiologia, 8, 75–83.

    Google Scholar 

  • Mendez, J., Comptois, P., & Iglesias, I. (2005). Betula pollen: One of the most important aeroallergens in Ourense, Spain. Aerobiological studies from 1993 to 2000. Aerobiologia, 21, 115–123.

    Google Scholar 

  • Menzel, A. (1997). Phänologie von Waldbäumen unter sich ändernden Klimabedingungen – Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstliche Forschungsberichte 164/1997 (147 p.). Forstwissenschaftliche Fakultät der Universität München und der Bayerischen Landesanstalt für Wald und Forstwirtschaft.

    Google Scholar 

  • Migliavacca, M., Cremonese, E., Colombo, R., Busetto, L., Galvagno, M., Ganis, L., Meroni, M., Pari, E., Rossini, M., Siniscalco, C., & Morra di Cella, U. (2008). European larch phenology in the Alps: Can we grasp the role of ecological factors by combining field observations and inverse modelling? International Journal of Biometeorology, 52(7), 587–605.

    CAS  Google Scholar 

  • Moriondo, M., Orlandini, S., De Nuntiis, P., & Mandrioli, P. (2001). Effect of agrometeorological parameters on the phenology of pollen emission and production of olive trees (Olea europea L.). Aerobiologia, 7, 225–232.

    Google Scholar 

  • Moseholm, L., Weeke, E. R., & Petersen, B. N. (1987). Forecast of pollen concentrations of Poaceae (grasses) in the air by time series analysis. Pollen et Spores, 19(2–3), 305–322.

    Google Scholar 

  • Mullins, J., & Emberlin, J. (1997). Sampling pollen. Journal of Aerosol Science, 28, 365–370.

    CAS  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    CAS  Google Scholar 

  • Nekovar, J., Koch, E., Kubin, E., Nejedlik, P., Sparks, T., & Wielgolaski, F. (Eds., 2008). COST Action 725, The History and current status of plant phenology in Europe (182 p.). Brussels: COST Office.

    Google Scholar 

  • Norris-Hill, J. (1995). The modelling of daily Poaceae pollen concentrations. Grana, 34, 182–188.

    Google Scholar 

  • Norris-Hill, J. (1998). A method to forecast the start of the Betula, Platanus and Quercus pollen seasons in North London. Aerobiology, 14, 165–170.

    Google Scholar 

  • Ocana-Peinado, F., Valderrama, M. J., & Aguilera, A. M. (2008). A dynamic regression model for air pollen concentration. Stochastic Environmental Research and Risk Assessment, 22, 59–63.

    Google Scholar 

  • Ong, E. K., Taylor, P. E., & Knox, R. B. (1997). Forecasting the onset of the grass pollen season in Melbourne (Australia). Aerobiologia, 13, 43–48.

    Google Scholar 

  • Orlandi, F., Garcia-Mozo, H., Vazquez Ezquerra, L., Romano, B., Dominguez, E., Galán, C., & Fornaciari, M. (2004). Phenological olive chilling requirements in Umbria (Italy) and Andalusia (Spain). Plant Biosystems, 138(2), 111–116.

    Google Scholar 

  • Orlandi, F., Vazquez, L. M., Ruga, L., Bonofiglio, T., Fornaciari, M., Garcia-Mozo, H., Dominguez, E., Romano, B., & Galán, C. (2005). Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucía, Spain, and Sicily, Italy). Annals of Agricultural and Environmental Medicine, 12, 47–52.

    Google Scholar 

  • Orlandi, F., Lanari, D., Romano, B., & Fornaciari, M. (2006). New model to predict the timing of olive (Olea europaea) flowering: A case study in central Italy. New Zealand Journal of Crop and Horticultural Science, 34, 93–99.

    Google Scholar 

  • Pallant, J. (2001). SPSS Survival Manual. Buckingham: Open University Press.

    Google Scholar 

  • Pasken, R., & Pietrowicz, J. A. (2005). Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmospheric Environment, 39, 7689–7701.

    CAS  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes: The art of scientific computing. New York: Cambridge University Press. 963 p.

    Google Scholar 

  • Puppi, G., & Zanotti, A. L. (1989). Methods in phenological mapping. Aerobiologia, 5, 44–54.

    Google Scholar 

  • Puppi, G., & Zanotti, A. L. (1992). Estimate and mapping of the activity of airborne pollen sources. Aerobiologia, 8(1), 69–74.

    Google Scholar 

  • Rantio-Lehtimaki, A., Viander, M., & Koivikko, A. (1994). Airborne birch antigens in different particle sizes. Clinical and Experimental Allergy, 24, 23–28.

    CAS  Google Scholar 

  • Ranzi, A., Lauriola, P., Marletto, V., & Zinoni, F. (2003). Forecasting airborne pollen concentrations: Development of local models. Aerobiologia, 19, 39–45.

    Google Scholar 

  • Reaumur, R. A. F. de. (1735). Observations du thermomètre, faites a Paris pendant l´année 1735, comparée avec celles qui ont été faites sous la ligne, a lísle de France, a Alger et quelque unes de nos isles de l´Amérique. Memoire de l´Académie des Sciences de Paris.

    Google Scholar 

  • Ribeiro, H., Cunha, M., & Abreu, I. (2006). Comparison of classical models for evaluating the heat requirements of olive (Olea europeae L.) in Portugal. Journal of Integrative Plant Biology, 48(6), 664–671. doi:10.1111/j.1744-7909.2006.00269.x.

    Google Scholar 

  • Rodriguez Rajo, F. J., Dopazo, A., & Jato, V. (2004). Environmental factors affecting the start of the pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Annals of Agricultural and Environmental Medicine, 11, 35–44.

    Google Scholar 

  • Rodriguez Rajo, F. J., Medez, J., & Jato, V. (2005). Factors affecting pollination ecology of Quercus anemophilous species in north-west Spain. Botanical Journal of the Linnean Society, 149, 283–297.

    Google Scholar 

  • Rodriguez-Rajo, F. J., Valencia-Barrera, R. M., Vega-Maray, A. M., Suarez, F. J., Fernandez-Gonzalez, D., & Jato, V. (2006). Prediction of airborne Alnus pollen concentration by using ARIMA models. Annals of Agricultural and Environmental Medicine, 13, 25–32.

    Google Scholar 

  • Rogers, C. (2006). Knowledge gaps and hot topics in aerobiology. Paper presented at the 8th International Congress in Aerobiology, Neuchatel Switzerland.

    Google Scholar 

  • Ronneberger, O. (2007). 3D invariants for automated pollen recognition. Thesis. Freiburg im Breisgau: University of Freiburg.

    Google Scholar 

  • Ronneberger, O., Schultz, E., & Burkhardt, H. (2002). Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia, 18, 107–115.

    Google Scholar 

  • Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., & Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate Change 2007: Impacts, adaptation and vulnerability (Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 79–131). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rötzer, Th, & Chmielewski, F.-M. (2001). Phenological maps of Europe. Climate Research, 18, 249–257.

    Google Scholar 

  • Sánchez-Mesa, J. A., Galán, C., Martínez-Heras, J. A., & Hervás-Martínez, C. (2002). The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: The southern part of the Iberian Peninsula. Clinical and Experimental Allergy, 32, 1606–1612.

    CAS  Google Scholar 

  • Sánchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galán, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.

    Google Scholar 

  • Schaber, J., & Badeck, F.-W. (2003). Physiology-based phenology models for forest tree species in Germany. International Journal for Biometeorology, 47, 193–201.

    Google Scholar 

  • Scheifinger, H., Menzel, A., Koch, E., Peter, Ch, & Ahas, R. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in central Europe. International Journal of Climatology, 22, 1739–1755.

    Google Scholar 

  • Schueler, S., Schlunzen, K. H., & Scholz, F. (2005). Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees, 19, 154–161.

    Google Scholar 

  • Schwartz, M. D. (Ed.). (2003). Phenology: An integrative environmental science. Dordrecht/Boston/London: Kluwer Academic Publishers. 564 pp.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., Genikhovich, E., Jatczak, K., Jato, V., Nekovar, J., Minin, A., Severova, E., & Shalaboda, V. (2008). Representativeness of point-wise phenological Betula data collected in different parts of Europe. Global Ecology and Biogeography, 17(4), 489–502.

    Google Scholar 

  • SKC (2010). Button Aerosol Sampler. http://www.skcinc.com/prod/225-360.asp. Accessed 5 October/2010.

  • Slini, T., Kaprara, A., Karatzas, K., & Moussiopoulos, N. (2006). PM10 forecasting for Thessaloniki, Greece. Environmental Modelling & Software, 21, 559–565.

    Google Scholar 

  • Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35, 1400–1406.

    CAS  Google Scholar 

  • Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50, 233–242.

    Google Scholar 

  • Sodeau, J., O’Connor, D., Hellebust, S., & Healy, D. (2010). Real-time spectrocopic measurments of PBAP in field and laboratory envirnments. Paper presented at the 9th International Congress on Aerobiology, Buenos Aires.

    Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    CAS  Google Scholar 

  • Spieksma, F. T., & Nikkels, A. H. (1998). Airborne grass pollen in Leiden, The Netherlands: Annual variations and trends in quantities and season starts over 26 years. Aerobiologia, 14, 347–358.

    Google Scholar 

  • Spieksma, F. T., & Nikkels, A. H. (1999). Similarity in seasonal appearance between atmospheric birch-pollen grains and allergen in paucimicronic, size-fractionated ambient aerosol. Allergy, 54(3), 235–241.

    CAS  Google Scholar 

  • Spieksma, F. T., Kramps, J. A., Van der Linden, A. C., Nikkels, B. H., Plomp, A., Koerten, H. K., & Dijkman, J. H. (1990). Evidence of grass-pollen allergenic activity in the smaller micronic atmosphere aerosol fraction. Clinical and Experimental Allergy, 20, 273–280.

    CAS  Google Scholar 

  • Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 232–332.

    Google Scholar 

  • Stark, P. C., Ryan, L. M., McDonald, J. L., & Burge, H. A. (1997). Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia, 13, 177–184.

    Google Scholar 

  • Stephen, E., Raftery, A. E., & Dowding, P. (1990). Forecasting spore concentrations – a time-series approach. International Journal of Biometeorology, 34, 87–89.

    CAS  Google Scholar 

  • Sterling, M., Rogers, C., & Levetin, E. (1999). An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia, 15, 9–18.

    Google Scholar 

  • Stöckli, R., & Vidale, P. L. (2004). European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter data set. International Journal of Remote Sensing, 25, 3303–3330.

    Google Scholar 

  • Stöckli, R., Rutishauser, T., Dragoni, D., O’Keefe, J., Thornton, P. E., Jolly, M., Lu, L., & Denning, A. S. (2008). Remote sensing data assimilation for a prognostic phenology model. Journal of Geophysical Research, 113, G04021. doi:10.1029/2008JG000781.

    Google Scholar 

  • Stokstad, E. (2002). A little pollen goes a long way. Science, 296, 2314.

    Google Scholar 

  • Suzuki, M., Tonouchi, M., & Murayama, K. (2008). Automatic measurements of Japanese cedar/cypress pollen concentration and the numerical forecasting at Tokyo metropolitan area.(Paper presented at the International Congress of Biometeorology, September 2008.

    Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. New York: Harper Collins.

    Google Scholar 

  • Tedeschini, E., Rodriguez-Rajo, F. J., Caramiello, R., Jato, V., & Frenguelli, G. (2006). The influence of climate changes in Platanus spp. pollination in Spain and Italy. Grana, 45, 222–229.

    Google Scholar 

  • Thibaudon, M., & Lachasse, C. (2005). Phénologie: Intérêt et méthodes en aérobiologie – Interest of phenology in relation to aerobiology. Revue française d’allergologie et d’immunologie clinique, 45, 194–199.

    Google Scholar 

  • Tormo, R., Munoz, A., & Silva, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore traps. Aerobiologia, 12, 161–166.

    Google Scholar 

  • Toro, F. J., Recio, M., Trigo, M. M., & Cabezudo, B. (1998). Predictive models in aerobiology: Data transformation. Aerobiologia, 14, 179–184.

    Google Scholar 

  • Torrigiani Malaspina, T., Cecchi, L., Morabito, M., Onorari, M., Domeneghetti, M. P., & Orlandini, S. (2007). Influence of meteorological conditions on male flower phenology of Cupressus sempervirens and correlation with pollen production in Florence. Trees, 21(5), 507–514.

    Google Scholar 

  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D., Pak, E. W., Mahoney, R., Vermote, E., & El Saleous, N. (2005). An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–5598.

    Google Scholar 

  • Tzima, F., Karatzas, K., Mitkas, P., & Karathanasis, S. (2007). Using data-mining techniques for PM10 forecasting in the metropolitan area of Thessaloniki, Greece, IEEE International Conference on Neural Networks – Conference Proceedings, art. no. 4371394 (pp. 2752–2757). Proceedings of the 20th International Joint Conference on Neural Networks (http://www.ijcnn2007.org. Organized by the IEEE Computational Intelligence Society and by the International Neural Network Society, Orlando, Florida, August 2007).

  • van Vliet, A. J. H., Overeem, A., de Groot, R. S., Jacobs, A. F. G., & Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in The Netherlands. International Journal of Climatology, 22, 1757–1767.

    Google Scholar 

  • Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.

    Google Scholar 

  • Voukantsis, D., Niska, H., Karatzas, K., Riga, M., Damialis, A., & Vokou, D. (2010). Forecasting daily pollen concentrations using data-driven modelling methods in Thessaloniki, Greece. Atmospheric Environment, 44, 5101–5111. doi:10.1016/j.atmosenv.2010.09.006.

    CAS  Google Scholar 

  • Voukantsis, D., Karatzas, D., Jaeger, S., & Berger, U. (2011). Personalized information services for quality of life: The case of airborne pollen induced symptoms. 12th International Conference, EANN 2011, and 7th IFIP WG 12.5 International Conference, AIAI 2011, Corfu, Greece, 15–18 September 2011. Proceedings, Part I (L. S. Iliadis, & C. Jayne (Eds.)) (pp. 509–515), ISBN 978-3-642-23956-4. New York: Springer.

    Google Scholar 

  • Walker, D. A., Epstein, H. E., Jia, G. J., Balser, A., Copass, C., Edwards, E. J., Gould, W. A., Hollingsworth, J., Knudson, J., Maier, H. A., Moody, A., & Raynolds, M. K. (2003). Phytomass, LAI, and NDVI in northern Alaska: Relationship to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research, 108, 8169.

    Google Scholar 

  • Ward, S. (2008). The earth observation handbook – Climate change special edition 2008 (esa sP-1315). ESA Communication Production Office, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands, 278 p.

    Google Scholar 

  • White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11(2), 217–234.

    CAS  Google Scholar 

  • Winkler, H., Ostrowski, R., & Wilhelm, M. (2001). Pollenbestimmungsbuch der Stiftung Deutscher Polleninformationsdienst. Takt Verlag: Paderborn.

    Google Scholar 

  • Zhang, Z., Zhe, J., Chandra, S., & Hu, J. (2005). An electronic pollen detection method using Coulter counting principle. Atmospheric Environment, 39, 5446–5453.

    CAS  Google Scholar 

  • Ziello, C., Böck, A., Jochner, S., Estrella, N., Buters, J., Weichenmeier, I, Behrendt, H., & Menzel, A. (2010). Bio-monitoring of the Zugspitze area: Linking phenological, meteorological and palynological data along an altitudinal gradient. Paper presented at Erste Wissenschaftliche Tagung Umweltforschungsstation Schneefernerhaus, Iffeldorf, Mai 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helfried Scheifinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scheifinger, H. et al. (2013). Monitoring, Modelling and Forecasting of the Pollen Season. In: Sofiev, M., Bergmann, KC. (eds) Allergenic Pollen. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4881-1_4

Download citation

Publish with us

Policies and ethics