Skip to main content

Silica-Based Nanoparticles for Intracellular Drug Delivery

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

Silica-based nanoparticles have recently raised a great deal of attention as possible drug carriers. Such an interest is driven by the possibility to control their size, the chemical composition and the porous structure as well as to easily modify their surface with a wide range of biologically-relevant functionalities, favoring colloidal stability, long-time blood circulation and even specific targeting. Drug loading can be performed during particle formation but, at this time, the most popular method relies on the impregnation of pre-formed mesoporous colloids. Strategies to control drug delivery via bio-responsive pore capping are also developed. However, despite an increasing number of in vitro and in vivo studies related to the interaction of silica particles with cells and animals, their biocompatibility is still an issue, especially if applications in intracellular drug delivery are foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FITC:

fluorescein isothiocyanate

HSN:

hollow silica nanoparticles

MSN:

mesoporous silica nanoparticles

PEG:

polyethylene glycol

PEI:

polyethylene imine

PLGA:

poly(lactic-co-glycolic acid)

PLLA:

poly-L-lactic acid

PVP:

polyvinylpyrrolidone

RES:

reticuloendothelial system

siRNA:

short-interfering RNA

TEOS:

tetraethoxysilane

References

  • Akhtar MJ, Ahmed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathionne depletion in human lung epithelial cells. Toxicol 276:95–102

    CAS  Google Scholar 

  • Allouche J, Boissière M, Hélary C, Livage J, Coradin T (2006) Biomimetic core-shell gelatine/silica nanoparticles: a new example of biopolymer-based nanocomposites. J Mater Chem 16: 3121–3126

    Google Scholar 

  • Andersson N, Alberius PCA, Pedersen JS, Bergstrom L (2004)Structural features and adsorption behaviour of mesoporous silica particles formed from droplets generated in a spraying chamber. Microporous Mesoporous Mater 72:175–183

    CAS  Google Scholar 

  • Arcangeli G, Rotella CM, Giuliano G, Arcangeli P (1990) Induction of cell from patients with silicosis by silica crystals. Effects of cell-derived factors and silica particles on human lung fibroblasts proliferation and biosynthesis. Int J Immunopathol Pharmacol 3:51–61

    Google Scholar 

  • Arriagada FJ, Osseo-Asare K (1995) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interf Sci 211:210–220

    Google Scholar 

  • Baccile N, Grosso D, Sanchez C (2003) Aerosol generated mesoporous silica particles. J Mater Chem 13:3011–3016

    CAS  Google Scholar 

  • Bagchi N (1992) What makes silica toxic ? Br J Ind Med 49:163–166

    PubMed  CAS  Google Scholar 

  • Balas F, Manzano M, Horcajada P, Vallet-Regi M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials, J Am Chem Soc 128:8116–8117

    PubMed  CAS  Google Scholar 

  • Barbé C, Bartlett J, Kong L, Finni K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug-delivery system. Adv Mater 16:1959–1966

    Google Scholar 

  • Barnes CA, Elsaesser A, Arkusz J et al (2008) Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074

    PubMed  CAS  Google Scholar 

  • Bass JD, Grosso D, Boissière C, Coradin T, Sanchez C (2007) The stability of mesoporous oxide and mixed-metal oxide materials under biologically-relevant conditions. Chem Mater 19: 4349–4354

    CAS  Google Scholar 

  • Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Organically modified silica nanoparticles: A nonviral vector for in-vivo gene delivery and expression in the brain, Proc Natl Acad Sci USA 102:11539–11544

    PubMed  CAS  Google Scholar 

  • Bégu S, Aubert Pouëssel Lerner DA, Charnay C, Tourné-Péteilh C, Devoisselle JM (2007) Liposil, a promising composite material for drug storage and release. J Controlled Release 118:1–6

    Google Scholar 

  • Bogush GH, Tracy MA, Zukoski IV CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids 104:95–106

    CAS  Google Scholar 

  • Boissiere C, Grosso D, Chumonnot A, Nicole L, Sanchez C (2010) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater DOI: 10.1002/adma.201001410

    PubMed  Google Scholar 

  • Boissière M, Meadows PJ, Brayner R, Hélary C, Livage J, Coradin T (2006) Turning biopolymer particles into hybrid capsules: the example of silica/alginate nanocomposites. J Mater Chem 16:1178–1182

    Google Scholar 

  • Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128

    PubMed  CAS  Google Scholar 

  • Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-Induced Self-Assembly: nanostructures made easy. Adv Mater 11:579–585

    CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels, Science 281:2013–2016

    PubMed  CAS  Google Scholar 

  • Burns AA, Vider J, Ow H et al (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448

    PubMed  CAS  Google Scholar 

  • Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science 282:1111–1114

    PubMed  CAS  Google Scholar 

  • Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20:8693–8699

    CAS  Google Scholar 

  • Chang JS, Chang KLB, Hwang DF, Kong ZL (2007) In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068

    PubMed  CAS  Google Scholar 

  • Chang, SM, Lee M, Kim WS (2005) Preparation of large monodispersed spherical silica particles using seed particle growth. J Colloid Interf Sci 286:536–542

    CAS  Google Scholar 

  • Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application, Biomaterials 25:723–727

    PubMed  Google Scholar 

  • Choi J, Zheng Q, Katz HE, Guilarte TR (2010) Silica-based nanoparticle uptake and cellular response by primary microglia. Env Health Persp 118:589–595

    CAS  Google Scholar 

  • De Monredon-Senani S, Bonhomme C, Ribot F, Babonneau F (2009) Covalent grafting of organoalkoxysilanes on silica surfaces in water-rich medium as evidenced by 29Si NMR. J Sol-Gel Sci Technol 50:152–157

    CAS  Google Scholar 

  • Deng G, Markowitz MA, Kust PR, Gaber BP (2000) Control of surface expression of functional groups on silica particles, Mater Sci Eng C 11:165–172

    Google Scholar 

  • Depasse J (1977) Comparison between two hypotheses about the physicochemical basis of the toxicity of silica. J Colloid Interf Sci 60:414–415

    CAS  Google Scholar 

  • Di Pasqua AJ, Sharma KK, Shi YL, Toms BB, Ouellette W, Dabrowiak JC, Asefa T (2008) Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem 102:1416–1423

    PubMed  Google Scholar 

  • Doadrio JC, Sousa EMB, Izquierdo-Barba I, Doadrio AL, Perez-Pariente J, Vallet-Regi M (2006) Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern, J Mater Chem 16:462–466

    CAS  Google Scholar 

  • Erdogu G, Hasirci V (1998) An overview of the role of mineral solubility in silicosis and abestosis. Environ Res Sect A 78:38–42

    Google Scholar 

  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquatic Toxicol 100:218–228

    CAS  Google Scholar 

  • Finnie KS, Jacques DA, McGann MJ, Blackford MG, Barbé CJ (2006) Encapsulation and controlled release of biomolecules from silica microparticles. J Mater Chem 16:4494–4498.

    CAS  Google Scholar 

  • Finnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbé CJ (2009) Biodegradability of sol-gel silica microparticles for drug delivery. J Sol-Gel Sci Technol 49:12–18

    CAS  Google Scholar 

  • Fuller J, Zugates G, Ferreira L, Ow H, Nguyen N, Wiesner U, Langer R (2008) Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 29:1526–1532

    PubMed  CAS  Google Scholar 

  • Galagudza MM, Korolev DV, Sonin DL, Postnov VN, Papayan GV, Uskov IS, Belozertseva AV, Shlyakhto EV (2010) Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: surface, functionalization, natural biodistribution and acute toxicity. Int J Nanomed 5:231–237

    CAS  Google Scholar 

  • Gan LM, Zhang K, Chew CH (1996) Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions. Colloid Surf A 110:199–206

    CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates, J Am Chem Soc 131:2072–2073

    PubMed  CAS  Google Scholar 

  • Gong C, Tao G, Yang L, Liu J, Liu Q, Zhuang Z (2010) SiO2 nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem Biophy Res Commun 397:397–400

    CAS  Google Scholar 

  • He Q, Zhan J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, Chen Y (2010) The effect of PEGylation of mesoporous silica nanoparticles on the binding of serum proteins and cellular responses. Biomaterials 31:1085–1092

    PubMed  CAS  Google Scholar 

  • Higashisaka K, Yoshioka Y, Yamashita K et al. (2011) Acute phase proteins as biomarkers for predicting the exposure and toxicity of nanomaterials. Biomaterials 32:3–9

    PubMed  CAS  Google Scholar 

  • Hu L, Mao Z, Gao C (2009) Colloidal particles for cellular uptake and delivery. J. Mater. Chem. 19:3108–3115

    CAS  Google Scholar 

  • Huang DM, Hung Y, Ko BS et al. (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19:2014–2016

    PubMed  CAS  Google Scholar 

  • Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448

    PubMed  CAS  Google Scholar 

  • Hudson SP, Padera RF, Langer R, Kohane DS (2008) The biocompatibility of mesoporous silicates. Biomaterials 29:4045–4055

    PubMed  CAS  Google Scholar 

  • Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C. Geochim Cosmochim Acta 69:293–303

    CAS  Google Scholar 

  • Iler RK (1979), The Chemistry of Silica, Wiley, New York

    Google Scholar 

  • Iskandar F, Gradon L, Okuyama K (2003) Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interf Sci 265:296–303

    CAS  Google Scholar 

  • Izquierdo-Barba I, Colilla M, Manzano M, Vallet-Regi M (2010) In vitro stability of SBA-15 under physiological conditions. Microporous Mesoporous Mater 132:442–452

    CAS  Google Scholar 

  • Jin YH, Li AZ, Hazelton SG, Liang S, John CL, Selid PD, Pierce DT, Zhao JX (2009) Amorphous silica nanohybrids: synthesis, properties and applications, Coord Chem Rev 253:2998–3014

    CAS  Google Scholar 

  • Jung CY, Kim JS, Chang TS, Kim ST, Lim HJ, Koo SM (2010) One step synthesis of structurally-controlled silicate particles from sodium silicate particles from sodium silicates using a simple precipitation process. Langmuir 26:5456–5461

    PubMed  CAS  Google Scholar 

  • Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, Prasad PN (2010) In vivo biodistribution and clearance studies using multimodal organically-modified silica nanoparticles. ACS Nano 4:699–708

    PubMed  CAS  Google Scholar 

  • Kim H., Kim S., Park C., Lee H., Park HJ, Kim C (2010) Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv Mater 22:4280–4283

    PubMed  CAS  Google Scholar 

  • Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodymamic therapy, J Am Chem Soc 129:2669–2675

    PubMed  CAS  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimumi-responsive controlled released of neurotransmitters and drug molecules, J Am Chem Soc 125:4451–4459

    PubMed  CAS  Google Scholar 

  • Li Z, Wen L, Shao L, Chen J (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control, J. Control Release 98:245–254

    PubMed  CAS  Google Scholar 

  • Lin W, Huang Y, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharm 21:252–259

    Google Scholar 

  • Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842

    PubMed  CAS  Google Scholar 

  • Linthicum DS (2001) Untrastructural effects of silicic acid on primary lung fibroblasts in tissue culture. Tissue Cell 33:514–523

    PubMed  CAS  Google Scholar 

  • Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kB pathways. Biomaterials 31:8198–8209

    PubMed  CAS  Google Scholar 

  • Liu Y, Miyoshi H, Nakamura M (2007a) Nanomedicine for drug delivery and imaging : A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticle, Int J Cancer 120:2527–2537

    PubMed  CAS  Google Scholar 

  • Liu Y, Miyoshi H, Nakamura M (2007b) Novel drug delivery system of hollow mesoporous silica capsules with thin shells: Preparation and fluorescein isothiocyanate (FITC) release kinetics, Colloids Surf B 58:180–187

    CAS  Google Scholar 

  • Lord MS, Cousins BG, Doherty PJ, Whitelock JM, Simmons A, Williams RL, Milthorpe BK (2006) The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27:4856–4862

    PubMed  CAS  Google Scholar 

  • Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    PubMed  CAS  Google Scholar 

  • Lu J, Liong M, Fink ZI, F. Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drug, Small 3:1341–1346

    PubMed  CAS  Google Scholar 

  • Lu J, Liong M, Li Z, Zink J, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 6:1794–1805

    PubMed  CAS  Google Scholar 

  • Mailaender V, Landfester K (2009) Interaction of Nanoparticles with Cells. Biomacromolecules 10:2379–2400

    CAS  Google Scholar 

  • Mao Z, Wan L, Hu L, Ma L, Gao C (2010) Tat peptide mediated cellular uptake of SiO2 submicron particles. Colloids Surf B 75:432–440

    CAS  Google Scholar 

  • Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Humbeeck JV, Van den Mooter G, Augustijns P, Martens JA (2008) Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica, Eur J Pharm Biopharm 69:223–230

    PubMed  CAS  Google Scholar 

  • Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009) Histological analysis of 70 nm silica particles-induced chronic toxicity in mice. Eur J Pharm Biopharm 72:626–629

    PubMed  CAS  Google Scholar 

  • Park YH, Kim JN, Jepong SH et al (2010) Assessment of dermal toxicity of nanosilica using culture keratinocytes, a human skin equivalent model and an in vivo model. Toxicol 267:178–181

    CAS  Google Scholar 

  • Radhakrishnan B, Ranjan R, Brittain WJ (2006) Surface initiated polymerizations from silica nanoparticles. Soft Matter 2:386–396

    CAS  Google Scholar 

  • Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent, J Am Chem Soc 126:13216–13217

    PubMed  CAS  Google Scholar 

  • Rao KS, El-Hami K, Kodaki T, Matsushige K (2005) A novel method for the synthesis of silica nanoparticles. J Colloid Interf Sci 289:125–131

    CAS  Google Scholar 

  • Rimer JD, Trofymluk O, Navrotsky A, Lobo RF, Vlachos DG (2007) Kinetic and thermodynamic studies of silica nanoparticle dissolution. Chem Mater 19:4189–4197

    CAS  Google Scholar 

  • Rosenholm J, Meinander A, Peuhu E, Niemi R, Eriksson J, Sahlgren C, Lindén M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206

    PubMed  CAS  Google Scholar 

  • Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles- opportunities & challenges. Nanoscale 2:1870–1883

    PubMed  CAS  Google Scholar 

  • Santra S (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications, Chem Commun 24:2810–2811

    Google Scholar 

  • Sauer A, Schlossbauer A, Ruthardt N, Cauda V, Bein T, Bräuchle C (2010) Role of Endosomal Escape for Disulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-Cell Imaging. Nano Lett 10:3684–3691

    PubMed  CAS  Google Scholar 

  • Sertchook H, Elimelech H, Makarov C, Khalfin R, Cohen Y, Shuster M, Babonneau F, Avnir D (2007) Composite particles of polyethylene@silica. J Am Chem Soc 129:98–108.

    PubMed  CAS  Google Scholar 

  • Sola R, Boj M, Hernandez-Felix S, Camprubi M (2009) Silica in oral drugs as a possible sarcoidosis-inducing antigen. Lancet 373:1943–1944

    PubMed  Google Scholar 

  • Slowing II, Trewyn BG, Lin VSY (2006) Effect of surface functionalisation of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792–14793

    PubMed  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60: 1278–1288

    PubMed  CAS  Google Scholar 

  • Soler Illia GJ, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138

    PubMed  Google Scholar 

  • Souris JS, Lee CH, Cheng SH, Chen CT, Yang CS, Ho JA, Mou CY, Lo LW (2010) Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 31:5564–5574

    PubMed  CAS  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62–69

    Google Scholar 

  • Tao Z, Toms BB, Goddisman J, Asefa T (2009) Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. Chem Res Toxicol 22:1869–1880

    PubMed  CAS  Google Scholar 

  • Taylor-Pashow KML, Rocca JD, Huxford R, Lin W (2010) Hybrid nanomaterials for biomedical applications, Chem Commun 46:5832–5849

    CAS  Google Scholar 

  • Thierry B, Zimmer L, McNiven S, Finnie K, Barbé C, Griesser HJ (2008) Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles, Langmuir 24:8143–8150

    PubMed  CAS  Google Scholar 

  • Trewyn BG, Nieweg JA, Zhao Y, Lin VSY (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Engin J 137:23–29

    CAS  Google Scholar 

  • Vallhov H, Gabrielsson S, Stromme M, Scheynius A, Garcia-Bennett AE (2007) Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett 7: 3576–3582

    PubMed  CAS  Google Scholar 

  • Vallet-Regi M (2006) Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering, Chem Eur J 12:5934–5943

    CAS  Google Scholar 

  • Van Shooneveld MM, Vucic E, Koole R, Zhou Y, Stocks J, Cormode DP, Tang CY, Gordon RE, Nicolay K, Meijerink A, Fayad ZA, Mulder WJM (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 8:2517–2525

    Google Scholar 

  • Vivero-Escoto JL, Slowing II, Lin VSY (2010a) Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa. Biomaterials 31:1325–1333

    PubMed  CAS  Google Scholar 

  • Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010b) Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small 6:1952–1967

    PubMed  CAS  Google Scholar 

  • Vogelsberger W, Seidel A, Rudakoff G (1992) The solubility of silica in water. J Chem Soc Faraday Trans 88:473–476

    CAS  Google Scholar 

  • Wallace AF, Gibbs, GV, Dove PM (2010) Influence of ion-associated water on the hydrolysis of Si-O bonded interactions. J Phys Chem A 114:2534–2542

    PubMed  CAS  Google Scholar 

  • Wang F, Gao F, Lan M, Yuan H, Huang Y, Liu J (2009) Oxidative stress contributes to silica nanoparticle-induces cytotoxicity in human embryonic kidney cells. Toxicol in Vitro 23:808–815

    PubMed  CAS  Google Scholar 

  • Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W (2006) Watching silica nanoparticles glow in the biological world, Anal Chem 78:646–654

    Google Scholar 

  • Wang L, Zhao W, Tan W (2008) Bioconjugated silica nanoparticles, Nano Res 1:99–115

    CAS  Google Scholar 

  • Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190

    PubMed  CAS  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    PubMed  Google Scholar 

  • Yang J, Lee J, Kang J, Lee K, Suh J, Yoon Y, Haam S (2008) Hollow silica nanocontainers as drug delivery vehicles, Langmuir 24:3417–3421

    PubMed  CAS  Google Scholar 

  • Yang Y, Coradin T (2008) A green route to silica nanoparticles with controlled size and structure. Green Chem 10:183–190

    CAS  Google Scholar 

  • Ye Y, Liu J, Sun L, Chen M, Lan M (2010) Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol in Vitro 24:751–758

    PubMed  CAS  Google Scholar 

  • Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging, J Am Chem Soc 130:9006–9012

    PubMed  CAS  Google Scholar 

  • Zalzberg L, Avnir D (2008) Biocompatible hybrid particles of poly(L-lactic acid)@silica. J Sol-Gel Sci Technol 48:47–50

    CAS  Google Scholar 

  • Zhang Y, Hu L, Yu D, Gao C (2010) Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials 31:8465–8474

    PubMed  CAS  Google Scholar 

  • Zou H, Wu S, Shen J (2008) Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles. Langmuir 24:10453–10461

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Coradin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Quignard, S., Masse, S., Coradin, T. (2011). Silica-Based Nanoparticles for Intracellular Drug Delivery. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_12

Download citation

Publish with us

Policies and ethics