Skip to main content

Quantum Electro-Mechanical Systems

Recipe to make a mechanical device interfere with itself

  • Conference paper
New Directions in Mesoscopic Physics (Towards Nanoscience)

Part of the book series: NATO Science Series ((NAII,volume 125))

  • 298 Accesses

Abstract

A dominant theme of modern physics is to show that quantum mechanics is a valid description of the world, from atomic lengths scales and upward. This pursuit is aimed at both answering questions about the apparent boundary between the classical and quantum world, and at exploiting quantum behavior for technological purpose. As a result of the intense effort in quantum computing, nano-electronic devices have entered this realm and shown themselves to be fully quantum mechanical. Single electron devices and SQUIDs have recently exhibited quantized energy levels, Schrodinger evolution, and superposition states (Nakamura et al., 1999; Friedman et al., 2000; Vion et al., 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aassime, A., D. Gunnarsson, K. Bladh, P. Delsing, and R. Schoelkopf: 2001, ‘Radio-frequency single-electron transistor: toward the shot-noise limit’. Applied Physics Letters 79(24), 4031–4033.

    Google Scholar 

  • Armour, A., M. Blencowe, and K. Schwab: 2002, ‘Mechanical Lamb-shift analogue for the Cooper-pair box’. Physica B 316, 406–407.

    Google Scholar 

  • Blencowe, M. and M. Wybourne: 1999, ‘Quantum Squeezing of Mechanical Motion for Micron-Sized Cantilevers’. Physica B 280(1–4), 555–556.

    Google Scholar 

  • Bocko, M. F. and R. Onofrio: 1996, ‘On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress’. Reviews of Modern Physics 68(3), 755–799.

    Google Scholar 

  • Bose, S., K. Jacobs, and P. Knight: 1999, ‘Scheme to probe the decoherence of a macroscopic object’. Physical Review A 59(5), 3204–3210.

    Google Scholar 

  • Braginsky, V. B. and F. Y. Khalili: 1992, Quantum Measurement. Cambridge University Press.

    Google Scholar 

  • Brune, M., P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A. Maali, J. Raimond, and S. Haroche: 1994, ‘From Lamb Shift to Light Shifts: Vacuum and Subphoton Cavity Fields Measured by Atomic Phase Sensitive Detection’. Physical Review Letters 72, 3339–3342.

    Google Scholar 

  • Carr, S., W. Lawrence, and M. Wybourne: 2001, ‘Accessibility of quantum effects in mesomechanical systems’. Physical Review B 64, 220101.

    Google Scholar 

  • Caves, C. M., K. S. Thorne, R. W. Dreaver, V. D. Sandberg, and M. Zimmermann: 1980, ‘On the measurement of a weak classical force coupled to a quantum-mechanical oscillator: I. Issues of principle’. Reviews of Modern Physics 52(2), 341–392.

    Google Scholar 

  • Cirac, J. and P. Zoller: 1995, ‘Quantum Computing with Cold Trapped Ions’. Physical Review Letters 74(20), 4091–4094.

    Google Scholar 

  • Cottet, A., D. Vion, A. Assime, P. Joyez, D. Esteve, and M. Devoret: 2002, ‘Implementation of a combined charge-phase quantum bit in a superconducting circuit’. Physica C 367, 197–203.

    Google Scholar 

  • Cross, M. and R. Lifshitz: 2001, ‘Elastic wave transmission at an abrupt junction in a thin plate with applications to heat transport and vibrations in mesoscopic systems’. Phys. Rev. B 64, 0854324.

    Google Scholar 

  • Devoret, M. H. and R. J. Schoelkopf: 2000, ‘Amplifying quantum signals with the single electron transistor’. Nature 406, 19–26.

    Google Scholar 

  • Friedman, J. R., V. Patel, W. Chen, S. Tolpygo, and J. Lukens: 2000, ‘Quantum superposition of distinct macroscopic states’. Nature 406, 43–46.

    Google Scholar 

  • Haroche, S. and J. Raimond: 1994, ‘Manipulation of Nonclassical Field States in a Cavity by Atom Interferometry’. In: P. Berman (ed.): Cavity Quantum Electrodynamics. Acedemic Press, Inc., p. 123.

    Google Scholar 

  • Hopkins, A., K. Jacobs, S. Habib, and K. Schwab: 2003, ‘Feedback cooling of a nanomechanical resonator’. Submitted to Phys. Rev. B.

    Google Scholar 

  • Huang, X. M. H., C. A. Zorman, M. Mehregany, and M. L. Roukes: 2003, ‘Nanodevice motion at microwave frequencies’. Nature 421, 496.

    Google Scholar 

  • Irish, E. K. and K. Schwab: 2003, ‘Quantum Measurements with a coupled nanomechanical resonator-cooper pair box system’. submitted to Physical Review B.

    Google Scholar 

  • Kimble, H.: 1994, ‘Structure and Dynamics of Cavity Quantum Electrodynamics’. In: P. Berman (ed.): Cavity Quantum Electrodynamics. Acedemic Press, Inc., p. 203.

    Google Scholar 

  • Korotkov, A. N.: 1994, ‘Instrinsic noise of the single electron transistor’. Physical Review B 49(15), 10381–10392.

    Google Scholar 

  • Leggett, A.: 2002, ‘Testing the Limits of Quantum Mechanics: Motivation, State of Play, Prospects’. Journal of Physics Condensed Matter 14, R415–R451.

    Google Scholar 

  • Lu, N.: 1989, ‘Effects of dissipation on photon statistics and the lifetime of a pure number state’. Physical Review A 40, 1707–1708.

    Google Scholar 

  • Mozyrsky, D. and I. Martin: 2002, ‘Quantum-classical transition induced by electrical measurement’. Phys. Rev. Lett. 89, 018301.

    Google Scholar 

  • Nagerl, H., D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, M. Brune, J. Raimond, and S. Haroche: 2000, ‘Cavity QED-Experiments: Atoms in Cavities and Trapped Ions’. In: D. Bouwmeester, A. Ekert, and A. Zeilinger (eds.): The Physics of Quantum Information. New York: Springer.

    Google Scholar 

  • Nakamura, Y., Y. Pashkin, and J. Tsai: 1999, ‘Coherent control of a macroscopic quantum states in a single-Cooper-pair box’. Nature 398, 786–788.

    Google Scholar 

  • Nakamura, Y., Y. Pashkin, T. Yamamoto, and J. Tsai: 2002, ‘Charge Echo in a Cooper-Pair Box’. Phys. Rev. Lett. 88, 047901.

    Google Scholar 

  • Nogues, G., A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche: 1999, ‘Seeing a single photon without destroying it’. Nature 400, 239–242.

    Google Scholar 

  • Park, H., J. Park, A. K. Lim, E. H. Anderson, A. P. Alivisatos, and P. McEuen: 2000, ‘Nanomechanical oscillations in a single-C60 transistor’. Nature 407, 57–60.

    Google Scholar 

  • Schoelkopf, R., P. Wahlgren, A. Kozhevnikov, P. Delsing, and D. Prober: 1998, ‘The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer’. Science 280(5367), 1238–1242.

    Google Scholar 

  • Schwab, K.: 2001, ‘Quantum Measurement with Nanomechanical Systems’. In: R. Clark (ed.): Proceedings of the 1st International Conference on Experimental Implementation of Quantum Computing. pp. 189–194.

    Google Scholar 

  • Schwab, K.: 2002, ‘Frequency and Disipation Control of a Nanomechanical Resonator using a Single-electron Transistor’. Appl. Phys. Lett. 88, 047901.

    Google Scholar 

  • Schwab, K., J. Arlett, J. Worlock, and M. Roukes: 2001, ‘Thermal Conductance through discrete quantum channels’. Physica E 9(1), 60–68.

    Google Scholar 

  • Schwab, K., E. Henriksen, J. Worlock, and M. Roukes: 2000, ‘Measurement of the quantum of thermal conductance’. Nature 404(6781), 974–977.

    Google Scholar 

  • Sekaric, L., J. Parpia, H. Craighead, T. Feygelson, B. Houston, and J. Butler: 2002, ‘Nanomechanical resonant structures in nanocrystallline diamond’. Appl. Phys. Lett. 81, 4455–4457.

    Google Scholar 

  • Sidles, J., J. Garbini, K. Bruland, D. Rugar, O. Zuger, S. Hoen, and C. Yannoni: 1995, ‘Magnetic resonance force microscopy’. Reviews of Modern Physics 67, 249–265.

    Google Scholar 

  • Thorne, K. S., R. W. P. Drever, and C. M. Caves: 1978, ‘Quantum Nondemolition Measurements of Harmonic Oscillators’. Physical Review Letters 40(11), 667–671.

    Google Scholar 

  • Vion, D., A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. Devoret: 2002, ‘Manipulating the quantum state of an electrical circuit’. Science 296, 886–889.

    Google Scholar 

  • Zhang, Y. and M. Blencowe: 2001, ‘Intrinsic noise of a micro-mechanical displacement detector based on the radio-frequency single-electron transistor’. Journal of Applied Physics 91, 4249–4255.

    Google Scholar 

  • Zorin, A.: 1996, ‘Quantum-Limited Electrometer Based on Single Cooper-Pair Tunneling’. Physical Review Letters 76(23), 4408–4411.

    Google Scholar 

  • Zurek, W. H., S. Habib, and J. P. Paz: 1993, ‘Coherent States via Decoherence’. Physical Review Letters 70(9), 1187–1190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schwab, K. (2003). Quantum Electro-Mechanical Systems. In: Fazio, R., Gantmakher, V.F., Imry, Y. (eds) New Directions in Mesoscopic Physics (Towards Nanoscience). NATO Science Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1021-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1021-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1665-3

  • Online ISBN: 978-94-007-1021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics