Skip to main content

Emerging Roles of Canonical TRP Channels in Neuronal Function

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Ca2+ signaling in neurons is intimately associated with the regulation of vital physiological processes including growth, survival and differentiation. In neurons, Ca2+ elicits two major functions. First as a charge carrier, Ca2+ reveals an indispensable role in information relay via membrane depolarization, exocytosis, and the release of neurotransmitters. Second on a global basis, Ca2+ acts as a ubiquitous intracellular messenger to modulate neuronal function. Thus, to mediate Ca2+-dependent physiological events, neurons engage multiple mode of Ca2+ entry through a variety of Ca2+ permeable plasma membrane channels. Here we discuss a subset of specialized Ca2+-permeable non-selective TRPC channels and summarize their physiological and pathological role in the context of excitable cells. TRPC channels are predominately expressed in neuronal cells and are activated through complex mechanisms, including second messengers and store depletion. A growing body of evidence suggests a prime contribution of TRPC channels in regulating fundamental neuronal functions. TRPC channels have been shown to be associated with neuronal development, proliferation and differentiation. In addition, TRPC channels have also been suggested to have a potential role in regulating neurosecretion, long term potentiation, and synaptic plasticity. During the past years, numerous seminal discoveries relating TRPC channels to neurons have constantly emphasized on the significant contribution of this group of ion channels in regulating neuronal function. Here we review the major groundbreaking work that has uniquely placed TRPC channels in a pivotal position for governing neuronal Ca2+ signaling and associated physiological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    CAS  PubMed  Google Scholar 

  3. Putney JW Jr. (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34:339–344

    CAS  PubMed  Google Scholar 

  4. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  5. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82: 429–472

    CAS  PubMed  Google Scholar 

  6. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    CAS  PubMed  Google Scholar 

  7. Linden R (1994) The survival of developing neurons: a review of afferent control. Neuroscience 58:671–682

    CAS  PubMed  Google Scholar 

  8. Congar P, Leinekugel X, Ben-Ari Y, Crepel V (1997) A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 17:5366–5379

    CAS  PubMed  Google Scholar 

  9. Gomez TM, Robles E, Poo M, Spitzer NC (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291:1983–1987

    CAS  PubMed  Google Scholar 

  10. Lohmann C, Finski A, Bonhoeffer T (2005) Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat Neurosci 8:305–312

    CAS  PubMed  Google Scholar 

  11. Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687–2701

    PubMed  Google Scholar 

  12. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    CAS  PubMed  Google Scholar 

  13. Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10:559–567

    CAS  PubMed  Google Scholar 

  14. Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL (2006) Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40:495–504

    CAS  PubMed  Google Scholar 

  15. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    CAS  PubMed  Google Scholar 

  16. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291

    CAS  PubMed  Google Scholar 

  17. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, Mercuri NB (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18:2133–2145

    PubMed  Google Scholar 

  18. Hannan MA, Kabbani N, Paspalas CD, Levenson R (2008) Interaction with dopamine D2 receptor enhances expression of transient receptor potential channel 1 at the cell surface. Biochim Biophys Acta 1778:974–982

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Ambudkar IS, Ong HL (2007) Organization and function of TRPC channelosomes. Pflugers Arch 455:187–200

    CAS  PubMed  Google Scholar 

  20. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633

    PubMed Central  CAS  PubMed  Google Scholar 

  21. von Bohlen Und Halbach O, Hinz U, Unsicker K, Egorov AV (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322:201–206

    CAS  Google Scholar 

  22. Bollimuntha S, Cornatzer E, Singh BB (2005) Plasma membrane localization and function of TRPC1 is dependent on its interaction with beta-tubulin in retinal epithelium cells. Vis Neurosci 22:163–170

    PubMed Central  PubMed  Google Scholar 

  23. Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D (2008) Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol 586:4859–4875

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Glazebrook PA, Schilling WP, Kunze DL (2005) TRPC channels as signal transducers. Pflugers Arch 451:125–130

    CAS  PubMed  Google Scholar 

  25. Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60

    CAS  PubMed  Google Scholar 

  26. Yu PC, Gu SY, Bu JW, Du JL TRPC1 Is Essential for In Vivo Angiogenesis in Zebrafish. Circ Res 106:1221–1232

    Google Scholar 

  27. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8:730–735

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Berbey C, Weiss N, Legrand C, Allard B (2009) Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. J Biol Chem 284:36387–36394

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Montell C (2005) TRP channels in Drosophila photoreceptor cells. J Physiol 567:45–51

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99:6376–6381

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    CAS  PubMed  Google Scholar 

  32. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    CAS  PubMed  Google Scholar 

  33. Zhang P, Yang C, Delay RJ (2010) Odors Activate Dual Pathways, a TRPC2 and an AA-dependent Pathway, in Mouse Vomeronasal Neurons. Am J Physiol Cell Physiol 298:C1253–C1264

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Spors H, Sobel N (2007) Male behavior by knockout. Neuron 55:689–693

    CAS  PubMed  Google Scholar 

  35. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805

    CAS  PubMed  Google Scholar 

  36. Li HS, Xu XZ, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24:261–273

    CAS  PubMed  Google Scholar 

  37. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    CAS  PubMed  Google Scholar 

  38. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27:5179–5189

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel-Duby R, Shin DM, Yan Z, Williams RS (2004) TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci USA 101:9387–9392

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci USA 106:6706–6711

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Rodriguez-Santiago M, Mendoza-Torres M, Jimenez-Bremont JF, Lopez-Revilla R (2007) Knockout of the trcp3 gene causes a recessive neuromotor disease in mice. Biochem Biophys Res Commun 360:874–879

    CAS  PubMed  Google Scholar 

  43. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15:635–646

    CAS  PubMed  Google Scholar 

  44. Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol 567:59–66

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalie A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Obukhov AG, Nowycky MC (2002) TRPC4 can be activated by G-protein-coupled receptors and provides sufficient Ca(2+) to trigger exocytosis in neuroendocrine cells. J Biol Chem 277:16172–16178

    CAS  PubMed  Google Scholar 

  47. Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci USA 100:16065–16070

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Pape HC, Munsch T, Budde T (2004) Novel vistas of calcium-mediated signalling in the thalamus. Pflugers Arch 448:131–138

    CAS  PubMed  Google Scholar 

  49. Huang WC, Young JS, Glitsch MD (2007) Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 42:1–10

    CAS  PubMed  Google Scholar 

  50. Gao YQ, Gao H, Zhou ZY, Lu SD, Sun FY (2004) Expression of transient receptor potential channel 4 in striatum and hippocampus of rats is increased after focal cerebral ischemia. Sheng Li Xue Bao 56:153–157

    CAS  PubMed  Google Scholar 

  51. Beech DJ (2007) Bipolar phospholipid sensing by TRPC5 calcium channel. Biochem Soc Trans 35:101–104

    CAS  PubMed  Google Scholar 

  52. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    CAS  PubMed  Google Scholar 

  53. Wu G, Lu ZH, Obukhov AG, Nowycky MC, Ledeen RW (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with alpha5beta1 integrin initiates neurite outgrowth. J Neurosci 27:7447–7458

    CAS  PubMed  Google Scholar 

  54. Gomez T (2005) Neurobiology: channels for pathfinding. Nature 434:835–838

    CAS  PubMed  Google Scholar 

  55. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 29:9794–9808

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Gomez TM, Zheng JQ (2006) The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci 7:115–125

    CAS  PubMed  Google Scholar 

  58. Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572:165–172

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van’t Veer A, Meloni EG, Carlezon WA Jr., Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Yan HD, Villalobos C, Andrade R (2009) TRPC channels mediate a Muscarinic receptor-induced after depolarization in cerebral cortex. J Neurosci 29:10038–10046

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Calupca MA, Locknar SA, Parsons RL (2002) TRPC6 immunoreactivity is colocalized with neuronal nitric oxide synthase in extrinsic fibers innervating guinea pig intrinsic cardiac ganglia. J Comp Neurol 450:283–291

    CAS  PubMed  Google Scholar 

  62. Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23:2477–2487

    PubMed Central  PubMed  Google Scholar 

  63. Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 21:2692–2700

    PubMed  Google Scholar 

  64. Giampa C, DeMarch Z, Patassini S, Bernardi G, Fusco FR (2007) Immunohistochemical localization of TRPC6 in the rat substantia nigra. Neurosci Lett 424:170–174

    CAS  PubMed  Google Scholar 

  65. Chung YH, Sun Ahn H, Kim D, Hoon Shin D, Su Kim S, Yong Kim K, Bok Lee W, Ik Cha C (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085:132–137

    CAS  PubMed  Google Scholar 

  66. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109:95–104

    CAS  PubMed  Google Scholar 

  67. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    CAS  PubMed  Google Scholar 

  68. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    CAS  PubMed  Google Scholar 

  69. Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima T, Araishi K, Shin HS, Kano M (2005) Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257–268

    CAS  PubMed  Google Scholar 

  70. Tu P, Gibon J, Bouron A (2010) The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria. J Neurochem 112:204–213

    CAS  PubMed  Google Scholar 

  71. Leuner K, Kazanski V, Muller M, Essin K, Henke B, Gollasch M, Harteneck C, Muller WE (2007) Hyperforin–a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J 21:4101–4111

    CAS  PubMed  Google Scholar 

  72. Foster RR, Zadeh MA, Welsh GI, Satchell SC, Ye Y, Mathieson PW, Bates DO, Saleem MA (2009) Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium 45: 384–390

    CAS  PubMed  Google Scholar 

  73. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    CAS  PubMed  Google Scholar 

  74. Albert AP (2004) Activation of TRPC6 channel proteins: evidence for an essential role of phosphorylation. J Physiol 561:354

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Min MY, Shih PY, Wu YW, Lu HW, Lee ML, Yang HW (2009) Neurokinin 1 receptor activates transient receptor potential-like currents in noradrenergic A7 neurons in rats. Mol Cell Neurosci 42:56–65

    CAS  PubMed  Google Scholar 

  76. Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280:32035–32047

    CAS  PubMed  Google Scholar 

  77. Suzuki F, Morishima S, Tanaka T, Muramatsu I (2007) Snapin, a new regulator of receptor signaling, augments alpha1A-adrenoceptor-operated calcium influx through TRPC6. J Biol Chem 282:29563–29573

    CAS  PubMed  Google Scholar 

  78. Krizaj D (2005) Compartmentalization of calcium entry pathways in mouse rods. Eur J Neurosci 22:3292–3296

    PubMed Central  PubMed  Google Scholar 

  79. Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S, Lathia JD, Rich JN, Chan SL (2010) Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 70:418–427

    CAS  PubMed  Google Scholar 

  80. Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378: 975–982

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 293:C1103–C1111

    CAS  PubMed  Google Scholar 

  82. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    PubMed  Google Scholar 

  83. Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Yao H, Peng F, Fan Y, Zhu X, Hu G, Buch SJ (2009) TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway. Cell Death Differ 16:1681–1693

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, Wang Y (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121:2301–2307

    CAS  PubMed  Google Scholar 

  86. Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, Wang Y (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11:741–743

    CAS  PubMed  Google Scholar 

  87. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    CAS  PubMed  Google Scholar 

  88. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002) Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem 277:12302–12309

    CAS  PubMed  Google Scholar 

  89. Trebak M, Vazquez G, Bird GS, Putney JW Jr. (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461

    CAS  PubMed  Google Scholar 

  90. Berg AP, Sen N, Bayliss DA (2007) TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J Neurosci 27:8845–8856

    CAS  PubMed  Google Scholar 

  91. Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    CAS  PubMed  Google Scholar 

  92. Yoon IS, Li PP, Siu KP, Kennedy JL, Macciardi F, Cooke RG, Parikh SV, Warsh JJ (2001) Altered TRPC7 gene expression in bipolar-I disorder. Biol Psychiatry 50:620–626

    CAS  PubMed  Google Scholar 

  93. Sekaran S, Lall GS, Ralphs KL, Wolstenholme AJ, Lucas RJ, Foster RG, Hankins MW (2007) 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci 27:3981–3986

    CAS  PubMed  Google Scholar 

  94. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    CAS  PubMed  Google Scholar 

  95. Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M (2005) TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280:2132–2140

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330

    CAS  PubMed  Google Scholar 

  97. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322

    CAS  PubMed  Google Scholar 

  98. O’Bryant SE, Hobson V, Hall JR, Waring SC, Chan W, Massman P, Lacritz L, Cullum CM, Diaz-Arrastia R (2009) Brain-derived neurotrophic factor levels in Alzheimer’s disease. J Alzheimers Dis 17:337–341

    PubMed Central  PubMed  Google Scholar 

  99. Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    CAS  PubMed  Google Scholar 

  100. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    CAS  PubMed  Google Scholar 

  102. Selvaraj S, Watt JA, Singh BB (2009) TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+). Cell Calcium 46:209–218

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Selvaraj S, Sun Y, Singh BB (2010) TRPC channels and their implication in neurological diseases. CNS Neurol Disord Drug Targets 9:94–104

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Fumagalli F, Racagni G, Riva MA (2006) The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenomics J 6:8–15

    CAS  PubMed  Google Scholar 

  105. Tyler WJ, Perrett SP, Pozzo-Miller LD (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8:524–531

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G (2005) The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+ entry into HEK293 cells. Cell Signal 17:437–445

    CAS  PubMed  Google Scholar 

  107. Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    CAS  PubMed  Google Scholar 

  108. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    PubMed  Google Scholar 

  109. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    CAS  PubMed  Google Scholar 

  110. Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311:617–631

    CAS  PubMed  Google Scholar 

  111. Boitier E, Rea R, Duchen MR (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145: 795–808

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Maciel EN, Vercesi AE, Castilho RF (2001) Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J Neurochem 79:1237–1245

    CAS  PubMed  Google Scholar 

  113. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    CAS  PubMed  Google Scholar 

  114. Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    CAS  PubMed  Google Scholar 

  115. Amoroso S, Gioielli A, Cataldi M, Di Renzo G, Annunziato L (1999) In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular Ca(2+) increase. Biochim Biophys Acta 1452:151–160

    CAS  PubMed  Google Scholar 

  116. Michaelis ML, Foster CT, Jayawickreme C (1992) Regulation of calcium levels in brain tissue from adult and aged rats. Mech Ageing Dev 62:291–306

    CAS  PubMed  Google Scholar 

  117. Aarts MM, Tymianski M (2005) TRPMs and neuronal cell death. Pflugers Arch 451: 243–249

    CAS  PubMed  Google Scholar 

  118. Miller BA (2006) The role of TRP channels in oxidative stress-induced cell death. J Membr Biol 209:31–41

    CAS  PubMed  Google Scholar 

  119. Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42:543–549

    CAS  PubMed  Google Scholar 

  120. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    CAS  PubMed  Google Scholar 

  121. Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K (2004) Ca(2+) signaling by TRPC3 involves Na(+) entry and local coupling to the Na(+)/Ca(2+) exchanger. J Biol Chem 279:13696–13704

    CAS  PubMed  Google Scholar 

  122. Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr. (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    CAS  PubMed  Google Scholar 

  123. Crouzin N, de Jesus Ferreira MC, Cohen-Solal C, Aimar RF, Vignes M, Guiramand J (2007) Alpha-tocopherol-mediated long-lasting protection against oxidative damage involves an attenuation of calcium entry through TRP-like channels in cultured hippocampal neurons. Free Radic Biol Med 42:1326–1337

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Biswaranjan Pani for conceptualizing the figure and helpful editorial comments. We duly acknowledge the grant support from the National Science foundation (0548733) and the National Institutes of Health (DE017102, 5P20RR017699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bollimuntha, S., Selvaraj, S., Singh, B.B. (2011). Emerging Roles of Canonical TRP Channels in Neuronal Function. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_31

Download citation

Publish with us

Policies and ethics