Skip to main content

Influence of the Load Dependent Material Properties on the Performance of Multilayer Piezoelectric Actuators

  • Conference paper
  • First Online:
IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 24))

  • 1006 Accesses

Abstract

Multilayer piezoelectric actuators are commonly used to control injection valves in modern combustion-engines. Their structural and functional integrity is associated with the loading conditions as well as with the actuator-design. In service mechanical stresses are an inherent loading scenario of such electro-mechanical converter components. Internal inhomogeneous mechanical and electrical fields may harm their integrity and accelerate phenomena such as degradation, fatigue and subcritical crack growth. A way to delay these phenomena is to reduce the tensile field-amplitudes by operating these piezoelectric components under a low compressive bias-stress. However, this also may influence the component’s performance. Interestingly, this bias-stress enhances its strain characteristics. In this work the electro-mechanical behaviour of a multilayer actuator has been characterised under different loading conditions using an adapted universal materials testing machine (UTM). The stiffness of the UTM has also been adjusted to simulate realistic conditions. This adaption enables the measurement of mechanical properties– such as mechanical stress and the corresponding strain– and electrical quantities, i.e. the electrical charge (or electric displacement) and the applied voltage (or electrical field) to the actuator. As a result, the stiffness, hysteresis-loops, such as the dielectric and butterfly curves and the stress-strain loop, as well as the actuator’s performance, can be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. In: Tuller HL (ed) Electronic materials: science and technology, Kluwer Academic Publishers

    Google Scholar 

  2. Mock R, Lubitz K (2009) Piezoelectric injection systems. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology, vol 114. Springer Series in Materials Science

    Google Scholar 

  3. Setter N (2002) Piezoelectric materials in devices. Ceramics Laboratory, EPFL Swiss Federal Institute of Technology, Ljubljana

    Google Scholar 

  4. Helke G, Lubitz K (2009) Piezoelectric PZT ceramics. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology, vol 114. Springer Series in Materials Science

    Google Scholar 

  5. Bhattacharya K, Ravichandran G (2003) Ferroelectric perovskites for electromechanical actuation. Acta Mat 51:5941–5960

    Article  Google Scholar 

  6. Kamlah M (2001) Review article– ferroelectric and ferroelastic piezoceramics– modelling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13:219–268

    Google Scholar 

  7. Zhou DY (2003) Experimental investigation of non-linear constitutive behavior of PZT piezoceramics. Ph.D.-thesis, University of Karlsruhe

    Google Scholar 

  8. Mitrovic M, Carman GP, Straub FK (2001) Response of piezoelectric stack actuators under combined electro-mechanical loading. Int J Solids Struct 38:4357–4374

    Article  MATH  Google Scholar 

  9. Arnold S, Pertsch P, Spanner K (2009) Piezoelectric Positioning. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and Future of a Technology, vol 114. Springer Series in Materials Science

    Google Scholar 

  10. dos Santos e Lucato SL, Lupascu DC, Kamlah M, etal (2001) Constraint-induced crack initiation at electrode edges in piezoelectric ceramics. Acta Mat 49:2751–2759

    Google Scholar 

  11. Elhadrouz M, Ben Zineb T, Patoor E (2006) Finite element analysis of a multilayer piezoelectric actuator taking into account the ferroelectric and ferroelastic behaviors. I J Eng Sci 44(15–16):996–1006

    Google Scholar 

  12. Aburatani H, Harada S, Uchino K, etal (1994) Destruction mechanisms in ceramic multilayer actuators. Jpn J Appl Phys 33:3091–3094

    Google Scholar 

  13. Furuta A, Uchino K (1993) Dynamic observation of crack propagation in piezoelectric multilayer actuators. J Am Ceram Soc 76:1615–1617

    Article  Google Scholar 

  14. He M-Y, Suo Z, McMeeking RM, etal (1994) The mechanics of some degradation mechanisms in ferroelectric ceramic actuators. Proc. SPIE 2189:344–355

    Article  Google Scholar 

  15. Ru CQ, Mao X, Epstein M (1998) Electric-field induced interfacial cracking in multilayer electrostrictive actuators. J Mech Phys Solids 46(8):1301–1318

    Article  MathSciNet  MATH  Google Scholar 

  16. Mao GZ, Fang DN (2004) Fatigue crack growth induced by domain switching under electromechanical load in ferroelectrics. Theor Appl Fract Mech 41:115–123

    Article  Google Scholar 

  17. Salz CRJ, Hoffmann M, Westram I, Rödel J (2005) Cyclic fatigue crack growth in PZT under mechanical loading. J Am Ceram Soc 88:1331–1333

    Article  Google Scholar 

  18. Bermejo R, Grünbichler H, Kreith J, Auer C (2009) Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature. J Eur Ceram Soc. doi:10.1016/j.jeurceramsoc.2009.08.013

    Google Scholar 

  19. Bermejo R, Grünbichler H, Kreith J, Danzer R (2008) Evaluation of toughness anisotropy of doped PZT ceramics as a function of load and temperature. In: Pokluda J, Luká\(\check{s}\)P,\(\breve{S}\)andera P, Dlouhý I (eds) Proceedings of the 17th european conference on fracture, VUTIUM Brno, pp 1701–1708

    Google Scholar 

  20. Kerkamm I, Hiller P, Granzow T, Rödel J (2009) Correlation of small- and large-signal properties of lead zirconate titanate multilayer actuators. Acta Mat 57:77–86

    Article  Google Scholar 

  21. Grünbichler H, Kreith J, Bermejo R, etal (2009) Modelling of the ferroic material behaviour of piezoelectrics: characterisation of temperature-sensitive functional properties. J Eur Ceram Soc. doi:10.1016/j.jeurceramsoc.2009.04.033

    Google Scholar 

  22. Kreith J, Grünbichler H, Bermejo R, etal (2008) Adaptation of a materials testing machine to characterise piezoelectric actuators. In: Freer R (ed) Proceedings of electroceramics XI, Manchester

    Google Scholar 

  23. Wersing W, Heywang W, Beige H, Thomann H (2009) The role of ferroelectricity for piezoelectric materials. In: Heywang W, Lubitz K, and Wersing W (eds) Piezoelectricity. Evolution and future of a technology, vol 114. Springer Series in Materials Science

    Google Scholar 

Download references

Acknowledgments

Financial support by the Austrian Federal Government (in particular from the Bundesministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft und Arbeit) and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgesellschaft mbH and by Steirische Wirtschaftsförderungsgesellschaft mbH, within the research activities of the K2 Competence Centre on “Integrated Research in Materials, Processing and Product Engineering,” operated by the Materials Center Leoben Forschung GmbH in the framework of the Austrian COMET Competence Centre Programme, is gratefully acknowledged.

The authors thank furthermore Mr. Athenstaedt W, Mr. Auer C and Mr. Hoffmann C for critical discussions and the company EPCOS OHG, Deutschlandsberg, Austria, for providing the material for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Grünbichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Grünbichler, H., Kreith, J., Bermejo, R., Krautgasser, C., Supancic, P. (2011). Influence of the Load Dependent Material Properties on the Performance of Multilayer Piezoelectric Actuators. In: Kuna, M., Ricoeur, A. (eds) IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials. IUTAM Bookseries, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9887-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9887-0_23

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9886-3

  • Online ISBN: 978-90-481-9887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics