Skip to main content

Grüne und nachhaltige nanotribologische Systeme im Rahmen der globalen Herausforderungen

  • Chapter
  • First Online:
Nano Risiko Governance

Zusammenfassung

Grüne und nachhaltige Konzepte finden zusehends Eingang in die Nanotechnologie, und Chancen und Risiken für die Umwelt werden vielfältig sorgfältig abgewogen. Dieses Kapitel befasst sich mit der Erstellung eines Regelwerks für grüne und nachhaltige nanotribologische Systeme. Tribologie ist die Lehre von Reibung, Schmierung und Verschleiß, und ein Tribosystem ist ein System, in dem es Teile in relativer Bewegung gibt. Tribosysteme gibt es also sehr viele in unserer heutigen technischen Welt: Motoren, die Interaktion Autoreifen und Straße, Eislaufen, etc. Die Nanotribologie untersucht tribologisch interessante Materialien, Strukturen und Systeme mit Methoden der Nanotechnologie (z. B. hochauflösender Mikroskopie). Nanotribologische Systeme sind Tribosysteme mit funktionalen Teilen im Nanobereich (1–100 nm). Grüne nanotribologische Systeme zeichnen sich dadurch aus, dass sie entweder für grüne Technologien wichtig sind oder dass sie zum Schutz der Umwelt sowie zur Wiederherstellung bereits geschädigter Ökosysteme beitragen. Die Produzenten nachhaltiger nanotribologischer Systeme stellen sicher, dass zukünftige Generationen dieselben Chancen auf ein erfülltes Leben haben wie wir selbst, durch die Anwendung nachhaltiger Methoden, aber auch durch Minimierung der Auswirkungen auf Mensch und Umwelt. Herausforderungen, Entwicklungen und Chancen dieses neuen Wissenschaftsbereichs werden aufgezeigt und im Rahmen der gravierendsten Probleme, mit denen wir uns derzeit als Menschheit auseinandersetzen müssen, eingebettet. Fünfzehn globale Herausforderungen werden seit 1996 jährlich vom Millennium Project identifiziert. Das Millennium Projekt beinhaltet Organisationen der Vereinten Nationen, Regierungen, Unternehmen, Nichtregierungsorganisationen, Universitäten und Einzelpersonen aus mehr als 50 Ländern. Grüne nanotribologische Systeme ist von besonderer Bedeutung für die Globale Herausforderung 13 (Energie) und die Globale Herausforderung 14 (Wissenschaft und Technik). Diese beiden Herausforderungen werden im vorliegenden Kapitel ausführlicher vorgestellt und potentielle Beiträge grüner nanotribologischer Systeme zur erfolgreichen Adressierung dieser beiden Herausforderungen skizziert. Anschließend wird das Konzept nachhaltiger nanotribologischer Systeme eingeführt. Dies geschieht durch Korrelation nanotribologischer Entwicklungen mit Prinzipien der Nachhaltigkeit, die von der US-amerikanischen Biomimicry Guild eingeführt wurden. Fazit und Ausblick sowie Empfehlungen runden das Kapitel ab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \n.

  2. 2.

    Kursiv gesetzter Text bis zum Ende dieses Abschnittes entspricht der deutschen Übersetzung von Material von der Webpage der Biomimicry Guild, das hier mit freundlicher Erlaubnis reproduziert wird.

Literatur

  • Al-Solaiman S (2012) Proceedings of the sustainability through biomimicry conference, sustainability through biomimicry 2012. College of Design, Dammam, Kingdom of Saudi Arabia, Nov. 27–28, 274 p

    Google Scholar 

  • Andreeva DV, Fix D, Moehwald H, Shchukin DG (2008) Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Adv Mater 20:2789–2794

    Article  CAS  Google Scholar 

  • Anonymous (2010) Summary: world tribology congress 2009 (WTC IV) international tribology council information 191. . Zugegriffen: 18. Mär 2014

    Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  CAS  Google Scholar 

  • Auty RM (1993) Sustaining development in mineral economies: the resource curse thesis. Routledge, London

    Book  Google Scholar 

  • Balshaw DM, Philbert M, Suk WA (2005) Research strategies for safety evaluation of nanomaterials, part III: nanoscale technologies for assessing risk and improving public health. Toxicol Sci 88:298–306

    Article  CAS  Google Scholar 

  • Bar-Cohen Y (2005) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Baumgartner W, Saxe F, Weth A, Hajas D, Sigumonrong D, Emmerlich J, Singheiser M, Böhme W, Schneider JM (2007) The sandfish’s skin: morphology, chemistry and reconstruction. J Bionic Eng 4:1–9

    Article  Google Scholar 

  • Behrens P, Baeuerlein E (2009) Handbook of biomineralization: biomimetic and bioinspired chemistry. Wiley VCH, Weinheim

    Google Scholar 

  • Berthier S (2006) Iridescences: the physical colors of insects. Springer, New York

    Google Scholar 

  • Bhushan B (Hrsg) (2010) Springer handbook of nanotechnology, 3 Aufl. Springer, Heidelberg

    Book  Google Scholar 

  • Bidlingmaier W (Hrsg) (2000) Biologische Abfallverwertung. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Bilitewski B, Härdtle G, Marek K (2000) Abfallwirtschaft – Handbuch für Praxis und Lehre, 3. Aufl. Springer, Berlin

    Google Scholar 

  • Biomimicry G (2009) . Zugegriffen: 23. Dez 2012

    Google Scholar 

  • Biomimicry G (2012) . Zugegriffen: 18. Mär 2014

    Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  • Daniel TL (1981) Fish mucus: in situ measurements of polymer drag reduction. Biol Bull 160:376–382

    Article  Google Scholar 

  • Davim JP (Hrsg) (2013) Biomaterials and medical tribology: research and development. Woodhead Publishing, Cambridge (Rev Mech Eng Series 4)

    Google Scholar 

  • de Tommasi E, Rea I, Mocella V, Moretti L, De Stefano M, Rendina I, de Stefano L (2010) Multi-wavelength study of light transmitted through a single marine centric diatom. Opt Express 18(12):12203–12212

    Article  CAS  Google Scholar 

  • del Pobil AP, Mira J, Moonis A (Hrsg) (1998) Methodology and tools in knowledge-based systems. 11th Int Conf Indust Eng App Artif Intell Exp Syst. Notes in Artificial Intelligence, vol I. Springer, Berlin

    Google Scholar 

  • Demirbas A (2008) Biodiesel: A realistic fuel alternative for diesel engines. Springer, London

    Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking Books, New York

    Google Scholar 

  • Drack M, Gebeshuber IC (2013) Comment on „innovation through imitation: biomimetic, bioinspired and biokleptic research“ by A. E. Rawlings, J. P. Bramble and S. S. Staniland, Soft Matter, 2012, 8, 6675. Soft Matter, in press. doi:10.1039/c2sm26722e

    Google Scholar 

  • Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, López GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Nature 405:56–60

    Article  CAS  Google Scholar 

  • Fischer-Kowalski M, Haberl H, Payer H, Steurer A, Winiwarter V (1996) Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur – Ein Versuch in Sozialer Ökologie. Gordon und Breach – Fakultas, Amsterdam

    Google Scholar 

  • Fratzl P, Weinkamer R (2007) Natures hierarchical materials. Progress Mater Sci 52:1263–1334

    Article  CAS  Google Scholar 

  • Gazsó A (2008) The Austrian experience – project NANOTRUST, OECD Database, . Zugegriffen: 18. Mär 2014

    Google Scholar 

  • Gebeshuber IC (2007) Biotribology inspires new technologies. Nano Today 2:30–37

    Article  Google Scholar 

  • Gebeshuber IC (2012a) Green nanotribology. Proceedings IMechE part C. J Mech Eng Sci 226:374–386

    Google Scholar 

  • Gebeshuber IC (2012b) Green nanotribology and sustainable nanotribology in the frame of the global challenges for humankind. In: Nosonovsky M, Bhushan B (Hrsg) Green energy and technology series Ch 5. Springer, Berlin, S. 105–125. (Green Tribology – Biomimetics, Energy Conservation, and Sustainability)

    Google Scholar 

  • Gebeshuber IC (2013a) We have to establish a common language. What is the architect doing in the jungle? Biornametics. In: Imhof B, Gruber P (Hrsg) Edition angewandte. Springer, Wien

    Google Scholar 

  • Gebeshuber IC (2013b) Biomimetic inspiration regarding nano-tribology and materials issues in MEMS. In: Kumar SS, Satyanarayana N et al (Hrsg) Nano-tribology and materials issues in MEMS, Ch. 2. Springer

    Google Scholar 

  • Gebeshuber IC, Crawford RM (2006) Micromechanics in biogenic hydrated silica: hinges and interlocking devices in diatoms. Proc IMechE Part J: J Eng Tribol 220:787–796

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Drack M (2008) An attempt to reveal synergies between biology and engineering mechanics. Proc IMechE Part C: J Mech Eng Sci 222:1281–1287

    Article  Google Scholar 

  • Gebeshuber IC, Lee DW (2012) Nanostructures for coloration organisms other than animals. In: Bhushan B, Nosonovsky M (Hrsg) Springer encyclopedia of nanotechnology. Springer, 1790–1803. 3200 pages. ISBN 978-9048197507

    Google Scholar 

  • Gebeshuber IC, Majlis BY (2010) New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches. Tribol Mater Surf Interf 4:143–151

    Article  Google Scholar 

  • Gebeshuber IC, Majlis BY (2011) 3D corporate tourism: A concept for innovation in nanomaterials engineering. Int J Mater Eng Innov 2:38–48

    Article  Google Scholar 

  • Gebeshuber IC, Thompson JB, Del Amo Y, Stachelberger H, Kindt JH (2002) In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Mater Sci Technol 18:763–766

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Stachelberger H, Drack M (2005) Diatom bionanotribology – Biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J Nanosci Nanotechnol 5:79–87

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Drack M, Scherge M (2008) Tribology in biology. Tribol Surf Mater Interf 2:200–212

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Gruber P, Drack M (2009a) A gaze into the crystal ball – biomimetics in the year 2059. Proc IMechE Part C: J Mech Eng Sci 223:2899–2918

    Article  Google Scholar 

  • Gebeshuber IC, Majlis BY, Stachelberger H (2009b) Tribology in biology: biomimetic studies across dimensions and across fields. Int J Mech Mater Eng 4:321–327

    Google Scholar 

  • Gebeshuber IC, Stachelberger H, Ganji BA, Fu DC, Yunas J, Majlis BY (2009c) Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv Mat Res 74:265–268

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Drack M, Aumayr F, Winter HP, Franek F (2010) Scanning probe microscopy: from living cells to the subatomic range. In: Fuchs H, Bhushan B (Hrsg) Biosystems investigated by scanning probe microscopy, 1 Aufl. Springer, New York, S 834

    Google Scholar 

  • Gebeshuber IC, Majlis BY, Stachelberger H (2012) Biomimetics in tribology. Biomimetics – materials, structures and processes. In: Bruckner D, Gruber P, Hellmich C, Schmiedmayer H-B, Stachelberger H, Gebeshuber IC (Hrsg) Ideas and case studies. Biological and medical physics series, biomedical engineering. Springer, Berlin

    Google Scholar 

  • Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Glenn JC, Gordon TJ, Florescu E (2012) 2012 state of the future. The Millennium Project. MP Publications, Washington

    Google Scholar 

  • Haikonen PO (2007) Robot brains: circuits and systems for conscious machines. Wiley-Interscience, Chichester

    Book  Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    Article  CAS  Google Scholar 

  • Haugstad G (2012) Atomic force microscopy: understanding basic modes and advanced applications. Wiley, Hoboken

    Book  Google Scholar 

  • Hazel J, Stone M, Grace MS, Tsukruk VV (1999) Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J Biomech 32:477–484

    Article  CAS  Google Scholar 

  • Holsapple MP, Lehman-McKeeman LD (2005) Forum series: research strategies for safety evaluation of nanomaterials. Toxicol Sci 87:315

    Article  CAS  Google Scholar 

  • Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88:12–17

    Article  CAS  Google Scholar 

  • Isenmann R (2001) Innovationsquelle Natur – Was wir von der Natur zur Ableitung von ökologischen Innovationen lernen können. In: Wisser A, Nachtigall W (Hrsg) Biona-Report 15, S 224–242

    Google Scholar 

  • Jakowska S (1963) Mucus secretion in fish – a note. Ann N Y Acad Sci 160:458–462

    Google Scholar 

  • Jones RAL (2009) Challenges in soft nanotechnology. Faraday Discuss 143:9–14

    Article  CAS  Google Scholar 

  • Kessel A, Ben-Tal N (2010) Introduction to proteins: structure, function, and motion. Chapman & Hall/CRC mathematical & computational biology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kinoshita S (2008) Structural colors in the realm of nature. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  • Kobayashi A, Yamamoto I, Aoyama T (2004) Tribology of a snail (terrestrial gastropod). Tribol Series 41:429–436 (Proceedings 29th Leeds-Lyon Symp Tribology, Elsevier B.V.)

    Google Scholar 

  • Kumar CSSR (Hrsg) (2010) Biomimetic and bioinspired nanomaterials. Series nanomaterials for life sciences. Wiley VCH, Weinheim

    Google Scholar 

  • Kumar A, Stephenson LD, Murray JN (2006) Self-healing coatings for steel. Progr Org Coat 55:244–253

    Article  CAS  Google Scholar 

  • Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515

    Article  Google Scholar 

  • Lee D (2007) Natures palette: the science of plant color. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Ling SC, Ling TYJ (1974) Anomalous drag-reducing phenomenon at a water/fish-mucus or polymer interface. J Fluid Mech 65:499–512

    Article  Google Scholar 

  • Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF (2010) Biofabrication to build the biology-device interface. Biofabrication 2:022002

    Article  Google Scholar 

  • Macqueen MO, Mueller J, Dee CF, Gebeshuber IC (2011) GEMS: A MEMS-based way for the innervation of materials. Adv Mater Res 254:34–37

    Article  Google Scholar 

  • Mansour JM (2003) Biomechanics of cartilage (Ch 5). In: Oatis CA (Hrsg) Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Meadows D, Meadows D (1972) Die Grenzen des Wachstums. Bericht des Club of Rome zur Lage der Menschheit (Übers: E Zahn). DVA, München

    Google Scholar 

  • Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) Die Grenzen des Wachstums. Bericht des Club of Rome zur Lage der Menschheit. Deutsche Verlags-Anstalt, Stuttgart

    Article  Google Scholar 

  • Morina A, Liskiewicz TW, Neville A (2007) Opportunities and challenges for obtaining effective lubricated engineering systems inspired by the lubrication of synovial joints. Comp Biochem Physiol A 146:135

    Google Scholar 

  • Nachtigall W (1997) Vorbild Natur: Bionik-Design für funktionelles Gestalten. Springer, Berlin

    Google Scholar 

  • Neville A, Morina A, Liskiewicz T, Yan Y (2007) Synovial joint lubrication – does nature teach more effective engineering lubrication strategies? Proc IMechE Eng Part C J Mech Eng Sci 221:1223–1230

    Article  Google Scholar 

  • Nosonovsky M, Bhushan B (2007) Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater Sci Eng R Rep 58:162–193

    Article  Google Scholar 

  • Nosonovsky M, Bhushan B (2010a) Green tribology: principles, research areas and challenges. Phil Trans R Soc A 368:4677–4694

    Article  CAS  Google Scholar 

  • Nosonovsky M, Bhushan B (2010b) Theme issue green tribology. Phil Trans Roy Soc A 368:4675–4890

    Article  Google Scholar 

  • Nosonovsky M, Bhushan B (2011) Green tribology: biomimetics, energy conservation, and sustainability. Springer, Heidelberg

    Google Scholar 

  • Odum HT (1951) Notes on the strontium content of seawater, celestite radiolaria and strontianite snail shells. Science 114:211–213

    Article  CAS  Google Scholar 

  • Okada T, Kaneko M (Hrsg) (2010) Molecular catalysts for energy conversion. Springer series in materials science. Springer, Berlin

    Google Scholar 

  • Orsello CE, Lauffenburger DA, Hammer DA (2001) Molecular properties in cell adhesion: a physical and engineering perspective. Trends Biotechnol 19:310–316

    Article  CAS  Google Scholar 

  • Pennisi E (1999) Microbes, immunity, and disease: Is it time to uproot the tree of life? Science 284:1305–1307

    Article  CAS  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  CAS  Google Scholar 

  • Priya S, Inman DJ (Hrsg) (2010) Energy harvesting technologies. Springer, New York

    Google Scholar 

  • Ramshaw JAM, Werkmeister JA, Glattauer V (1996) Collagen-based biomaterials. Biotechnol Genet Eng Rev 13:335–382

    Article  CAS  Google Scholar 

  • Richert L, Vetrone F, Yi J-H, Zalzal SF, Wuest JD, Rosei F, Nanci A (2008) Surface nanopatterning to control cell growth. Adv Mater 15:1–5

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Rymuza Z (1989) Tribology of miniature systems. Tribology series. Elsevier Science Ltd, Amsterdam. ISBN 978-0444874016 576 pp

    Google Scholar 

  • Sanchez C, Arribart H, Giraud-Guille MM (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  CAS  Google Scholar 

  • Scherge M, Dienwiebel M (2010) Book of synopses 17th int coll tribology: solving friction and wear problems, Technische Akademie Esslingen TAE. In: Bartz WJ (Hrsg) Levers of tribological optimization. Ostfildern, S 13

    Google Scholar 

  • Schmitt OH (1982) Biomimetics in solving engineering problems. Talk given on April 26, 1982. .  Zugegriffen: 18. Mär 2014

    Google Scholar 

  • Shapira P, Youtie J (2012) The economic contributions of nanotechnology to green and sustainable growth. OECD/NNI international symposium on assessing the economic impact of nanotechnology, Background paper 3. . Zugegriffen: 19. Mär 2014

    Google Scholar 

  • Sigel A, Sigel H, Sigel RKO (Hrsg) (2008) Biomineralization: from nature to application. Metal ions in life sciences, Bd 2. Wiley, Chichester

    Book  Google Scholar 

  • Starr C, Taggart R (2008a) Animal structure and function, (Biology: the unity and diversity of life), Bd 5. Brooks Cole, Stamford

    Google Scholar 

  • Starr C, Taggart R (2008b) Plant structure and function Vol. 4, biology: the unity and diversity of life. Brooks Cole, Stamford

    Google Scholar 

  • Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4:349–354. (). Zugegriffen: 18. Mär 2014

    Google Scholar 

  • Szathmáry E, Maynard Smith J (1994) The major evolutionary transitions. Nature 374:227–232

    Article  Google Scholar 

  • Taleb NN (2012) Antifragile: Things that gain from disorder. Random House, New York

    Google Scholar 

  • Thomas R, d’Ari R (1990) Biological feedback. CRC, Boca Raton

    Google Scholar 

  • Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321

    Article  CAS  Google Scholar 

  • Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006a) Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91:14–19

    Article  CAS  Google Scholar 

  • Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N (2006b) Research strategies for safety evaluation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32

    Article  CAS  Google Scholar 

  • Thompson DAW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Tiffany MA, Gordon R, Gebeshuber IC (2010) Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp. Pol Bot J 55:27–41

    Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  CAS  Google Scholar 

  • United Nations (1987) Our common future. Report of the World Commission on Environment and Development. . Zugegriffen: 18. Mär 2014

    Google Scholar 

  • Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525–528

    Article  CAS  Google Scholar 

  • van der Zwaag S (Hrsg) (2007) Self healing materials: An alternative approach to 20 centuries of materials science. Springer Series in Materials Science, Springer, Dortrecht

    Google Scholar 

  • Vernes A, Böhm J, Vorlaufer G (2010) Ab initio optical properties of tribological/engineering surfaces. Tribol Lett 39:39–47

    Article  CAS  Google Scholar 

  • Vester F (1999) Die Kunst, vernetzt zu denken – Ideen und Werkzeuge für einen neuen Umgang mit Komplexität. DVA, Stuttgart, S 127 ff

    Google Scholar 

  • Vincent JFV (2005) Deconstructing the design of a biological material. J Theor Biol 236:73–78

    Article  Google Scholar 

  • Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl A (2006) Biomimetics – its practice and theory. J R Soc Interface 3:471–482

    Article  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  CAS  Google Scholar 

  • Wen S, Huang P (2012) Principles of tribology. Wiley, Singapore

    Google Scholar 

Download references

Danksagung

Teile dieses Buchkapitel sind Übersetzungen aus englischsprachigen tribologischen Fachartikeln der Autorin (Gebeshuber 2012a, b). Die Nationale Universität von Malaysia hat einen Teil dieser Arbeit im Rahmen des Arus Perdana Forschungsprojektes finanziert (Projektnummer UKM-AP-NBT-16–2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Gebeshuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Gebeshuber, I.C. (2014). Grüne und nachhaltige nanotribologische Systeme im Rahmen der globalen Herausforderungen. In: Gazsó, A., Haslinger, J. (eds) Nano Risiko Governance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1405-6_3

Download citation

Publish with us

Policies and ethics