Skip to main content

Perirhinal and Postrhinal Functional Inputs to the Hippocampus

  • Chapter
  • First Online:
Space,Time and Memory in the Hippocampal Formation

Abstract

There is widespread agreement that perirhinal (PER) and postrhinal (POR) cortices are essential for episodic memory. The conventional view is that PER provides object information, and POR provides spatial and contextual information to the hippocampus through different information streams to support episodic memory. There is, however, considerable integration across these two information streams. Moreover, PER and POR also participate in non-mnemonic cognitive processes. PER is necessary for object recognition memory and is involved in high-level perceptual processing that conjoins elemental features to represent unique objects and items. POR represents the spatial layout of the current context, including objects and patterns located in that context, and then monitors the context for changes. Such object and pattern information in POR most likely arrives via a direct PER to POR pathway. Thus, the PER provides object information to both the POR and to the hippocampus, but for different purposes. Object information in POR would be used to represent and update the spatial layout of physical features of the local environment and for forming contextual associations. Such contextual information from the POR together with object and item information from the PER are made available to the hippocampus for associative learning and episodic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggleton JP, Kyd RJ, Bilkey DK (2004) When is the perirhinal cortex necessary for the performance of spatial memory tasks? Neurosci Biobehav Rev 28(6):611–624. doi:10.1016/j.neubiorev.2004.08.007

    PubMed  Google Scholar 

  • Aggleton JP, Albasser MM, Aggleton DJ, Poirier GL, Pearce JM (2010) Lesions of the rat perirhinal cortex spare the acquisition of a complex configural visual discrimination yet impair object recognition. Behav Neurosci 124(1):55–68

    PubMed Central  PubMed  Google Scholar 

  • Albasser MM, Poirier GL, Aggleton JP (2010) Qualitatively different modes of perirhinal– hippocampal engagement when rats explore novel vs. familiar objects as revealed by c-Fos imaging. Eur J Neurosci 31(1):134–147. doi:10.1111/j.1460-9568.2009.07042.x

    PubMed  Google Scholar 

  • Anagnostaras SG, Maren S, Fanselow MS (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci 19(3):1106–1114

    CAS  PubMed  Google Scholar 

  • Bang SJ, Brown TH (2009) Perirhinal cortex supports acquired fear of auditory objects. Neurobiol Learn Mem 92(1):53–62. doi:10.1016/j.nlm.2009.01.002

    PubMed Central  PubMed  Google Scholar 

  • Barker GRI, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31(29):10721–10731. doi:10.1523/jneurosci.6413-10.2011

    CAS  PubMed  Google Scholar 

  • Barker GR, Warburton EC, Koder T, Dolman NP, More JC, Aggleton JP, Bashir ZI, Auberson YP, Jane DE, Brown MW (2006) The different effects on recognition memory of perirhinal kainate and NMDA glutamate receptor antagonism: implications for underlying plasticity mechanisms. J Neurosci 26(13):3561–3566. doi:10.1523/JNEUROSCI.3154-05.2006

    CAS  PubMed  Google Scholar 

  • Barker GRI, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27(11):2948–2957. doi:10.1523/jneurosci.5289-06.2007

    CAS  PubMed  Google Scholar 

  • Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ (2007a) Perceptual functions of perirhinal cortex in rats: zero-delay object recognition and simultaneous oddity discriminations. J Neurosci 27(10):2548–2559. doi:10.1523/JNEUROSCI.5171-06.2007

    CAS  PubMed  Google Scholar 

  • Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ (2007b) Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. Learn Mem 14(12):821–832. doi:10.1101/lm.749207

    PubMed Central  PubMed  Google Scholar 

  • Biedenkapp JC, Rudy JW (2009) Hippocampal and extrahippocampal systems compete for control of contextual fear: role of ventral subiculum and amygdala. Learn Mem 16(1):38–45. doi:10.1101/lm.1099109

    PubMed Central  PubMed  Google Scholar 

  • Bogacz R, Brown MW (2003) Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus 13(4):494–524. doi:10.1002/hipo.10093

    PubMed  Google Scholar 

  • Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17(1):5–11. doi:10.1101/lm.1650110

    PubMed Central  PubMed  Google Scholar 

  • Brown MW, Wilson FAW, Riches IP (1987) Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res 409(1):158–162. doi:10.1016/0006-8993(87)90753-0

    CAS  PubMed  Google Scholar 

  • Brown MW, Barker GRI, Aggleton JP, Warburton EC (2012) What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 50(13):3122–3140. doi:10.1016/j.neuropsychologia.2012.07.034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bucci DJ, Burwell RD (2004) Deficits in attentional orienting following damage to the perirhinal or postrhinal cortices. Behav Neurosci 118(5):1117–1122. doi:10.1037/0735-7044.118.5.1117

    PubMed  Google Scholar 

  • Bucci DJ, Phillips RG, Burwell RD (2000) Contributions of postrhinal and perirhinal cortex to contextual information processing. Behav Neurosci 114(5):882–894

    CAS  PubMed  Google Scholar 

  • Bucci DJ, Saddoris MP, Burwell RD (2002) Contextual fear discrimination is impaired by damage to the postrhinal or perirhinal cortex. Behav Neurosci 116(3):479–488

    PubMed  Google Scholar 

  • Buckley MJ, Gaffan D, Murray EA (1997) Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. J Neurophysiol 77(2):587–598

    CAS  PubMed  Google Scholar 

  • Burke SN, Maurer AP, Nematollahi S, Uprety AR, Wallace JL, Barnes CA (2011) The influence of objects on place field expression and size in distal hippocampal CA1. Hippocampus 21(7):783–801. doi:10.1002/hipo.20929

    PubMed Central  PubMed  Google Scholar 

  • Burke SN, Maurer AP, Hartzell AL, Nematollahi S, Uprety A, Wallace JL, Barnes CA (2012) Representation of three-dimensional objects by the rat perirhinal cortex. Hippocampus 22(10):2032–2044. doi:10.1002/hipo.22060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burwell RD (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol 437(1):17–41

    CAS  PubMed  Google Scholar 

  • Burwell RD, Agster KL (2008) Anatomy of the hippocampus and the declarative memory system. In: Eichenbaum H (ed) Memory systems, vol 3. Learning and memory: a comprehensive reference. Learning and memory: a comprehensive reference. Elsevier, Oxford, pp 47–66

    Google Scholar 

  • Burwell RD, Amaral DG (1998a) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398(2):179–205

    CAS  PubMed  Google Scholar 

  • Burwell RD, Amaral DG (1998b) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391(3):293–321. doi:10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X

    CAS  PubMed  Google Scholar 

  • Burwell RD, Hafeman DM (2003) Positional firing properties of postrhinal cortex neurons. Neuroscience 119(2):577–588

    CAS  PubMed  Google Scholar 

  • Burwell RD, Witter MP, Amaral DG (1995) Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5(5):390–408. doi:10.1002/hipo.450050503

    CAS  PubMed  Google Scholar 

  • Burwell RD, Shapiro ML, O’Malley MT, Eichenbaum H (1998) Positional firing properties of perirhinal cortex neurons. Neuroreport 9(13):3013–3018

    CAS  PubMed  Google Scholar 

  • Burwell RD, Bucci DJ, Sanborn MR, Jutras MJ (2004a) Perirhinal and postrhinal contributions to remote memory for context. J Neurosci 24(49):11023–11028. doi:10.1523/JNEUROSCI.3781-04.2004

    CAS  PubMed  Google Scholar 

  • Burwell RD, Saddoris MP, Bucci DJ, Wiig KA (2004b) Corticohippocampal contributions to spatial and contextual learning. J Neurosci 24(15):3826–3836. doi:10.1523/JNEUROSCI.0410-04.2004

    CAS  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM (2002) The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex. Eur J Neurosci 15(2):355–364. doi:10.1046/j.0953-816x.2001.01850.x

    PubMed  Google Scholar 

  • Bussey TJ, Saksida LM, Murray EA (2002) Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur J Neurosci 15(2):365–374. doi:10.1046/j.0953-816x.2001.01851.x

    PubMed  Google Scholar 

  • Campbell CBG, Hodos W (1970) The concept of homology and the evolution of the nervous system. Brain Behav Evol 3:353–367

    CAS  PubMed  Google Scholar 

  • Campolattaro MM, Freeman JH (2006a) Perirhinal cortex lesions impair feature-negative discrimination. Neurobiol Learn Mem 86(2):205–213. doi:10.1016/j.nlm.2006.03.001

    PubMed Central  PubMed  Google Scholar 

  • Campolattaro MM, Freeman JH (2006b) Perirhinal cortex lesions impair simultaneous but not serial feature-positive discrimination learning. Behav Neurosci 120(4):970–975. doi:10.1037/0735-7044.120.4.970

    PubMed Central  PubMed  Google Scholar 

  • Chrobak JJ, Amaral DG (2007) Entorhinal cortex of the monkey: VII. Intrinsic connections. J Comp Neurol 500(4):612–633. doi:10.1002/cne.21200

    PubMed  Google Scholar 

  • Clark Robert E, Reinagel P, Broadbent Nicola J, Flister Erik D, Squire Larry R (2011) Intact performance on feature-ambiguous discriminations in rats with lesions of the perirhinal cortex. Neuron 70(1):132–140. doi:10.1016/j.neuron.2011.03.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corodimas KP, LeDoux JE (1995) Disruptive effects of posttraining perirhinal cortex lesions on conditioned fear: contributions of contextual cues. Behav Neurosci 109(4):613–619

    CAS  PubMed  Google Scholar 

  • Cowell RA, Bussey TJ, Saksida LM (2006) Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. J Neurosci 26(47):12186–12197. doi:10.1523/jneurosci.2818-06.2006

    CAS  PubMed  Google Scholar 

  • Cowell RA, Bussey TJ, Saksida LM (2010) Components of recognition memory: dissociable cognitive processes or just differences in representational complexity? Hippocampus 20(11):1245–1262. doi:10.1002/hipo.20865

    PubMed  Google Scholar 

  • Deshmukh SS, Johnson JL, Knierim JJ (2012) Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: comparison with lateral entorhinal cortex. Hippocampus 22(10):2045–2058. doi:10.1002/hipo.22046

    PubMed  Google Scholar 

  • Deshmukh SS, Knierim JJ (2014) Spatial and nonspatial representations in the lateral entorhinal cortex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Dix SL, Aggleton JP (1999) Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res 99(2):191–200. doi:10.1016/S0166-4328(98)00079-5

    CAS  PubMed  Google Scholar 

  • Dolorfo CL, Amaral DG (1998a) Entorhinal cortex of the rat: organization of intrinsic connections. J Comp Neurol 398(1):49–82. doi:10.1002/(SICI)1096-9861(19980817)398:1<49::AID-CNE4>3.0.CO;2-9

    CAS  PubMed  Google Scholar 

  • Dolorfo CL, Amaral DG (1998b) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398(1):25–48

    CAS  PubMed  Google Scholar 

  • Eacott MJ, Gaffan EA (2005) The roles of perirhinal cortex, postrhinal cortex, and the fornix in memory for objects, contexts, and events in the rat. Quart J Exp Psychol B 58(3–4):202–217. doi:10.1080/02724990444000203

    CAS  Google Scholar 

  • Eacott MJ, Gaffan D, Murray EA (1994) Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur J Neurosci 6(9):1466–1478

    CAS  PubMed  Google Scholar 

  • Eacott MJ, Machin PE, Gaffan EA (2001) Elemental and configural visual discrimination learning following lesions to perirhinal cortex in the rat. Behav Brain Res 124(1):55–70. doi:10.1016/S0166-4328(01)00234-0

    CAS  PubMed  Google Scholar 

  • Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eichenbaum H, MacDonald CJ, Kraus BJ (2014) Time and the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Ennaceur A, Aggleton JP (1997) The effects of neurotoxic lesions of the perirhinal cortex combined to fornix transection on object recognition memory in the rat. Behav Brain Res 88(2):181–193. doi:10.1016/S0166-4328(97)02297-3

    CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31(1):47–59. doi:10.1016/0166-4328(88)90157-X

    CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1996) Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 80(1–2):9–25. doi:10.1016/0166-4328(96)00006-X

    CAS  PubMed  Google Scholar 

  • Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23(1):115–125

    CAS  PubMed  Google Scholar 

  • Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp Brain Res 96(3):457–472

    CAS  PubMed  Google Scholar 

  • Feinberg LM, Allen TA, Ly D, Fortin NJ (2012) Recognition memory for social and non-social odors: differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex. Neurobiol Learn Mem 97(1):7–16. doi:10.1016/j.nlm.2011.08.008

    CAS  PubMed  Google Scholar 

  • Forwood SE, Winters BD, Bussey TJ (2005) Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15(3):347–355. doi:10.1002/hipo.20059

    CAS  PubMed  Google Scholar 

  • Forwood SE, Bartko SJ, Saksida LM, Bussey TJ (2007) Rats spontaneously discriminate purely visual, two-dimensional stimuli in tests of recognition memory and perceptual oddity. Behav Neurosci 121(5):1032–1042. doi:10.1037/0735-7044.121.5.1032

    PubMed  Google Scholar 

  • Frankland PW, Cestari V, Filipkowski RK, McDonald RJ, Silva AJ (1998) The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav Neurosci 112(4):863–874

    CAS  PubMed  Google Scholar 

  • Furtak SC, Ahmed OJ, Burwell RD (2012) Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 76(5):976–988. doi:10.1016/j.neuron.2012.10.039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Futter JE, Davies M, Bilkey DK, Aggleton JP (2006) The effects of cytotoxic perirhinal cortex lesions on spatial learning by rats: a comparison of the dark agouti and Sprague–Dawley strains. Behav Neurosci 120(1):150–161. doi:10.1037/0735-7044.120.1.150

    PubMed  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264. doi:10.1126/science.1099901

    CAS  PubMed  Google Scholar 

  • Griffiths S, Scott H, Glover C, Bienemann A, Ghorbel MT, Uney J, Brown MW, Warburton EC, Bashir ZI (2008) Expression of long-term depression underlies visual recognition memory. Neuron 58(2):186–194

    CAS  PubMed  Google Scholar 

  • Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308(5729):1792–1794. doi:10.1126/science.1110449

    CAS  PubMed  Google Scholar 

  • Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7(2):146–183. doi:10.1002/(SICI)1098-1063(1997)7:2&amp;lt;146::AID-HIPO4&amp;gt;3.0.CO;2-L

    CAS  PubMed  Google Scholar 

  • Kent BW, Burwell RD (2012) Single units in the postrhinal cortex signal changes in context. In: Society for Neuroscience, New Orleans, 13–17 October, 2012

    Google Scholar 

  • Kholodar-Smith DB, Allen TA, Brown TH (2008a) Fear conditioning to discontinuous auditory cues requires perirhinal cortical function. Behav Neurosci 122(5):1178–1185. doi:10.1037/a0012902

    CAS  PubMed  Google Scholar 

  • Kholodar-Smith DB, Boguszewski P, Brown TH (2008b) Auditory trace fear conditioning requires perirhinal cortex. Neurobiol Learn Mem 90(3):537–543. doi:10.1016/j.nlm.2008.06.006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knierim JJ, Lee I, Hargreaves EL (2006) Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory. Hippocampus 16(9):755–764. doi:10.1002/hipo.20203

    PubMed  Google Scholar 

  • Knierim JJ, Neunuebel JP, Deshmukh SS (2014) Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames. Philos Trans R Soc B (in press)

    Google Scholar 

  • Komorowski RW, Manns JR, Eichenbaum H (2009) Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J Neurosci 29(31):9918–9929. doi:10.1523/JNEUROSCI.1378-09.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. doi:10.1038/nature05453

    CAS  PubMed  Google Scholar 

  • Liu P, Bilkey DK (1998a) Excitotoxic lesions centered on perirhinal cortex produce delay-dependent deficits in a test of spatial memory. Behav Neurosci 112(3):512–524

    CAS  PubMed  Google Scholar 

  • Liu P, Bilkey DK (1998b) Lesions of perirhinal cortex produce spatial memory deficits in the radial maze. Hippocampus 8(2):114–121. doi:10.1002/(SICI)1098-1063(1998)8:2&lt;114::AID-HIPO3&gt;3.0.CO;2-L

    CAS  PubMed  Google Scholar 

  • Liu P, Bilkey DK (1998c) Perirhinal cortex contributions to performance in the Morris water maze. Behav Neurosci 112(2):304–315

    CAS  PubMed  Google Scholar 

  • Liu P, Bilkey DK (1999) The effect of excitotoxic lesions centered on the perirhinal cortex in two versions of the radial arm maze task. Behav Neurosci 113(4):672–682

    CAS  PubMed  Google Scholar 

  • Liu P, Bilkey DK (2001) The effect of excitotoxic lesions centered on the hippocampus or perirhinal cortex in object recognition and spatial memory tasks. Behav Neurosci 115(1):94–111

    CAS  PubMed  Google Scholar 

  • Liu Z, Richmond BJ (2000) Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. J Neurophysiol 83(3):1677–1692

    CAS  PubMed  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

    CAS  PubMed  Google Scholar 

  • MacDonald Christopher J, Lepage Kyle Q, Eden Uri T, Eichenbaum H (2011) Hippocampal “Time Cells” bridge the gap in memory for discontiguous events. Neuron 71(4):737–749. doi:10.1016/j.neuron.2011.07.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machin P, Vann SD, Muir JL, Aggleton JP (2002) Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition or performance of tests of allocentric spatial memory. Behav Neurosci 116(2):232–240

    CAS  PubMed  Google Scholar 

  • Mandler G (1980) Recognizing: the judgment of previous occurrence. Psychol Rev 87(3):252–271

    Google Scholar 

  • Maren S, Fanselow MS (1997) Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem 67(2):142–149. doi:10.1006/nlme.1996.3752

    CAS  PubMed  Google Scholar 

  • Maren S, Aharonov G, Fanselow MS (1997) Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88(2):261–274

    CAS  PubMed  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 2000(23):649–711

    Google Scholar 

  • McTighe SM, Cowell RA, Winters BD, Bussey TJ, Saksida LM (2010) Paradoxical false memory for objects after brain damage. Science 330(6009):1408–1410

    CAS  PubMed  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M, Murray E (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13(12):5418–5432

    CAS  PubMed  Google Scholar 

  • Milner B, Penfield W (1955) The effect of hippocampal lesions on recent memory. Trans Am Neurol Assoc (80th Meeting):42–48

    Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273(5660):297–298

    CAS  PubMed  Google Scholar 

  • Muir GM, Bilkey DK (2001) Instability in the place field location of hippocampal place cells after lesions centered on the perirhinal cortex. J Neurosci 21(11):4016–4025

    CAS  PubMed  Google Scholar 

  • Muller R (1996) A quarter of a century of place cells. Neuron 17(5):813–822. doi:10.1016/S0896-6273(00)80214-7

    CAS  PubMed  Google Scholar 

  • Mumby DG, Pinel JP (1994) Rhinal cortex lesions and object recognition in rats. Behav Neurosci 108(1):11–18

    CAS  PubMed  Google Scholar 

  • Mumby DG, Glenn MJ, Nesbitt C, Kyriazis DA (2002) Dissociation in retrograde memory for object discriminations and object recognition in rats with perirhinal cortex damage. Behav Brain Res 132(2):215–226. doi:10.1016/S0166-4328(01)00444-2

    PubMed  Google Scholar 

  • Mumby DG, Piterkin P, Lecluse V, Lehmann H (2007) Perirhinal cortex damage and anterograde object-recognition in rats after long retention intervals. Behav Brain Res 185(2):82–87. doi:10.1016/j.bbr.2007.07.026

    PubMed  Google Scholar 

  • Murray EA, Mishkin M (1986) Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. J Neurosci 6(7):1991–2003

    CAS  PubMed  Google Scholar 

  • Murray EA, Wise SP (2012) Why is there a special issue on perirhinal cortex in a journal called hippocampus? The perirhinal cortex in historical perspective. Hippocampus 22(10):1941–1951. doi:10.1002/hipo.22055

    PubMed  Google Scholar 

  • Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30(1):99–122. doi:10.1146/annurev.neuro.29.051605.113046

    CAS  PubMed  Google Scholar 

  • Naber PA, Caballero-Bleda M, Jorritsma-Byham B, Witter MP (1997) Parallel input to the hippocampal memory system through peri- and postrhinal cortices. Neuroreport 8(11):2617–2621

    CAS  PubMed  Google Scholar 

  • Naber PA, Witter MP, Lopes da Silva FH (2001) Evidence for a direct projection from the postrhinal cortex to the subiculum in the rat. Hippocampus 11(2):105–117. doi:10.1002/hipo.1029

    CAS  PubMed  Google Scholar 

  • Nadel L, Willner J (1980) Context and conditioning - a place for space. Physiol Psychol 8(2):218–228

    Google Scholar 

  • Nicholson DA, Freeman JH Jr (2000) Lesions of the perirhinal cortex impair sensory preconditioning in rats. Behav Brain Res 112(1–2):69–75

    CAS  PubMed  Google Scholar 

  • Norman G, Eacott MJ (2004) Impaired object recognition with increasing levels of feature ambiguity in rats with perirhinal cortex lesions. Behav Brain Res 148(1–2):79–91. doi:10.1016/S0166-4328(03)00176-1

    CAS  PubMed  Google Scholar 

  • Norman G, Eacott MJ (2005) Dissociable effects of lesions to the perirhinal cortex and the postrhinal cortex on memory for context and objects in rats. Behav Neurosci 119(2):557–566. doi:10.1037/0735-7044.119.2.557

    CAS  PubMed  Google Scholar 

  • Otto TE, Eichenbaum H (1992) Complementary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task. Behav Neurosci 106(5):762–775

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Access Online via Elsevier,

    Google Scholar 

  • Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JN, Feldon J, Bannerman DM (1999) Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav Neurosci 113(6):1189–1203

    CAS  PubMed  Google Scholar 

  • Rolls ET, Robertson RG, Georges-Francois P (1997) Spatial view cells in the primate hippocampus. Eur J Neurosci 9(8):1789–1794

    CAS  PubMed  Google Scholar 

  • Rose M (1928) Die Inselrinde des Menschen und der Tiere. J Psychol Neurol 37:467–624

    Google Scholar 

  • Rothblat LA, Hayes LL (1987) Short-term object recognition memory in the rat: nonmatching with trial-unique junk stimuli. Behav Neurosci 101(4):587–590

    CAS  PubMed  Google Scholar 

  • Rudy JW (2009) Context representations, context functions, and the parahippocampal-hippocampal system. Learn Mem 16(10):573–585. doi:10.1101/lm.1494409

    PubMed Central  PubMed  Google Scholar 

  • Sato N, Nakamura K (2003) Visual response properties of neurons in the parahippocampal cortex of monkeys. J Neurophysiol 90(2):876–886

    PubMed  Google Scholar 

  • Scolville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Google Scholar 

  • Seoane A, Tinsley CJ, Brown MW (2012) Interfering with Fos expression in rat perirhinal cortex impairs recognition memory. Hippocampus 22(11):2101–2113. doi:10.1002/hipo.22028

    CAS  PubMed  Google Scholar 

  • Shapiro ML, Tanila H, Eichenbaum H (1997) Cues that hippocampal place cells encode: dynamic and hierarchical representation of local and distal stimuli. Hippocampus 7(6):624–642. doi:10.1002/(SICI)1098-1063(1997)7:6&lt;624::AID-HIPO5&gt;3.0.CO;2-E

    CAS  PubMed  Google Scholar 

  • Suzuki WA (2009) Perception and the medial temporal lobe: evaluating the current evidence. Neuron 61(5):657–666. doi:10.1016/j.neuron.2009.02.008

    CAS  PubMed  Google Scholar 

  • Suzuki WA (2010) Untangling memory from perception in the medial temporal lobe. Trends Cogn Sci 14(5):195–200. doi:10.1016/j.tics.2010.02.002

    PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14(3 Pt 2):1856–1877

    CAS  PubMed  Google Scholar 

  • Swanson LW (2004) Brain maps III. Gulf Professional Publishing

    Google Scholar 

  • Tanila H, Shapiro ML, Eichenbaum H (1997) Discordance of spatial representation in ensembles of hippocampal place cells. Hippocampus 7(6):613–623. doi:10.1002/(SICI)1098-1063(1997)7:6&lt;613::AID-HIPO4&gt;3.0.CO;2-F

    CAS  PubMed  Google Scholar 

  • Vidyasagar TR, Salzmann E, Creutzfeldt OD (1991) Unit activity in the hippocampus and the parahippocampal temporobasal association cortex related to memory and complex behaviour in the awake monkey. Brain Res 544(2):269–278

    CAS  PubMed  Google Scholar 

  • Wan H, Aggleton JP, Brown MW (1999) Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19(3):1142–1148

    CAS  PubMed  Google Scholar 

  • Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GR, Aggleton JP, Bashir ZI, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38(6):987–996

    CAS  PubMed  Google Scholar 

  • Warburton EC, Glover CP, Massey PV, Wan H, Johnson B, Bienemann A, Deuschle U, Kew JN, Aggleton JP, Bashir ZI, Uney J, Brown MW (2005) cAMP responsive element-binding protein phosphorylation is necessary for perirhinal long-term potentiation and recognition memory. J Neurosci 25(27):6296–6303. doi:10.1523/JNEUROSCI.0506-05.2005

    CAS  PubMed  Google Scholar 

  • Wiig KA, Cooper LN, Bear MF (1996) Temporally graded retrograde amnesia following separate and combined lesions of the perirhinal cortex and fornix in the rat. Learn Mem 3(4):313–325

    CAS  PubMed  Google Scholar 

  • Wiltgen BJ, Sanders MJ, Anagnostaras SG, Sage JR, Fanselow MS (2006) Context fear learning in the absence of the hippocampus. J Neurosci 26(20):5484–5491. doi:10.1523/JNEUROSCI.2685-05.2006

    CAS  PubMed  Google Scholar 

  • Winters BD, Bussey TJ (2005a) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25(17):4243–4251. doi:10.1523/jneurosci.0480-05.2005

    CAS  PubMed  Google Scholar 

  • Winters BD, Bussey TJ (2005b) Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25(1):52–61. doi:10.1523/JNEUROSCI.3827-04.2005

    CAS  PubMed  Google Scholar 

  • Winters BD, Reid JM (2010) A distributed cortical representation underlies crossmodal object recognition in rats. J Neurosci 30(18):6253–6261. doi:10.1523/jneurosci.6073-09.2010

    CAS  PubMed  Google Scholar 

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24(26):5901–5908. doi:10.1523/JNEUROSCI.1346-04.2004

    CAS  PubMed  Google Scholar 

  • Xiang JZ, Brown MW (1998) Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37(4–5):657–676

    CAS  PubMed  Google Scholar 

  • Yi DJ, Chun MM (2005) Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. J Neurosci 25(14):3593–3600. doi:10.1523/JNEUROSCI.4677-04.2005

    CAS  PubMed  Google Scholar 

  • Young BJ, Otto T, Fox GD, Eichenbaum H (1997) Memory representation within the parahippocampal region. J Neurosci 17(13):5183–5195

    CAS  PubMed  Google Scholar 

  • Zhu XO, Brown MW, Aggleton JP (1995a) Neuronal signalling of information important to visual recognition memory in rat rhinal and neighbouring cortices. Eur J Neurosci 7(4):753–765

    CAS  PubMed  Google Scholar 

  • Zhu XO, Brown MW, McCabe BJ, Aggleton JP (1995b) Effects of the novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain. Neuroscience 69(3):821–829

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9(12):4355–4370

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca D. Burwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ho, J.W., Burwell, R.D. (2014). Perirhinal and Postrhinal Functional Inputs to the Hippocampus. In: Derdikman, D., Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1292-2_3

Download citation

Publish with us

Policies and ethics