Skip to main content

Paleoclimate Implications for Human-Made Climate Change

  • Conference paper
  • First Online:
Climate Change

Abstract

Paleoclimate data help us assess climate sensitivity and potential human-made climate effects. We conclude that Earth in the warmest interglacial periods of the past million years was less than 1°C warmer than in the Holocene. Polar warmth in these interglacials and in the Pliocene does not imply that a substantial cushion remains between today’s climate and dangerous warming, but rather that Earth is poised to experience strong amplifying polar feedbacks in response to moderate global warming. Thus, goals to limit human-made warming to 2°C are not sufficient—they are prescriptions for disaster. Ice sheet disintegration is nonlinear, spurred by amplifying feedbacks. We suggest that ice sheet mass loss, if warming continues unabated, will be characterized better by a doubling time for mass loss rate than by a linear trend. Satellite gravity data, though too brief to be conclusive, are consistent with a doubling time of 10 years or less, implying the possibility of multimeter sea level rise this century. Observed accelerating ice sheet mass loss supports our conclusion that Earth’s temperature now exceeds the mean Holocene value. Rapid reduction of fossil fuel emissions is required for humanity to succeed in preserving a planet resembling the one on which civilization developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paleoanthropological evidence of Homo sapiens in Africa dates to about 200,000 years ago, i.e., over two glacial cycles. Earlier human-like populations, such as Neanderthals and Homo erectus, date back at least 2,000,000 years, but, as is clear from Fig. 1a, even the human-like species were present only during the recent time of ice ages.

  2. 2.

    CO2 climate forcing is approximately logarithmic because its absorption bands saturate as CO2 amount increases. An equation for climate forcing as a function of CO2 amount is given in Table 1 of Hansen et al. (2000).

  3. 3.

    One adjustment accounts for estimated glacial–interglacial change of the source region for the water vapor that forms the snowflakes (Vimeux et al. 2002). The source location depends on sea ice extent. This correction reduces interglacial warmth and thus reduces the discrepancy with the calculated interglacial temperatures in Fig. 4a.

    Another adjustment accounts for change of ice sheet thickness (Masson-Delmotte et al. 2010). This adjustment increases the fixed-altitude temperature in the warmest interglacials. The correction is based on ice sheet models, which yield a greater altitude for the central part of the ice sheet, even though sea level was higher in these interglacials and thus ice sheet volume was smaller. This counterintuitive result is conceivable because snowfall is greater during warmer interglacials, which could make the central altitude greater despite the smaller ice sheet volume. But note that the correction is based on ice sheet models that may be “stiffer” than real-world ice sheets.

  4. 4.

    Indian and Pacific Ocean temperatures in Fig. 5 are derived from forams that lived in the upper ocean, as opposed to benthic forams used to obtain global deep ocean temperature. The eastern Pacific temperature in Fig. 5b is the average for two locations, north and south of the equator, which are shown individually by Hansen et al. (2006).

References

  • Alley RB (2010) Ice in the hot box – what adaptation challenges might we face? In: 2010 AGU Fall Meeting, San Francisco, December 17, U52A-02

    Google Scholar 

  • Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res 110:C09505. doi:10.1029/2004JC002625

    Article  Google Scholar 

  • Beerling DJ, Royer DL (2011) Earth’s atmospheric CO2 history by proxy. Nat Geosci 4:1–2

    Article  Google Scholar 

  • Beerling D, Berner RA, Mackenzie FT, Harfoot MB, Pyle JA (2009) Methane and the CH4-related greenhouse effect over the past 400 million years. Am J Sci 309:97–113

    Article  CAS  Google Scholar 

  • Beerling DJ, Fox A, Stevenson DS, Valdes PJ (2011) Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc Natl Acad Sci USA 108:9770–9775

    Article  CAS  Google Scholar 

  • Berger AL (1978) Long term variations of daily insolation and quaternary climate changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford, 150 pp

    Google Scholar 

  • Berner RA, Caldeira K (1997) The need for mass balance and feedback in the geochemical carbon cycle. Geology 25:955–956

    Article  Google Scholar 

  • Bintanja R, van de Wal RSW, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128

    Article  CAS  Google Scholar 

  • Blakey R (2008) Global paleogeographic views of Earth history – Late Precambrian to Recent. http://jan.ucc.nau.edu/~rcb7/globaltext2.html

  • Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360:245–249

    Article  Google Scholar 

  • Broecker WS, Bond G, Klas M, Bonani G, Wolfi W (1990) A salt oscillator in the glacial North Atlantic? Paleoceanography 5:469–477

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric suphur, cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  • Charney JG, Arakawa A, Baker D, Bolin B, Dickenson R, Goody R, Leith C, Stommel HM, Wunsch CI (1979) Carbon dioxide and climate: a scientific assessment. National Academy of Sciences Press, Washington, DC, 33 pp

    Google Scholar 

  • Church JA et al (2010) Sea-level rise and variability: synthesis and outlook for the future. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Blackwell, Oxford

    Chapter  Google Scholar 

  • Chylek P, Lohmann U (2008) Aerosol radiative forcing and climate sensitivity deduced from the Last Glacial Maximum to Holocene transition. Geophys Res Lett 35:L04804. doi:10.1029/2007GL032759

    Article  Google Scholar 

  • Dowsett HJ, Cronin T (1990) High eustatic sea level during the middle Pliocene: evidence from the southeastern U.S. Atlantic coastal plain. Geology 18:435–438

    Article  Google Scholar 

  • Dowsett H, Thompson R, Barron J, Cronin T, Fleming F, Ishman S, Poore R, Willard D, Holtz T Jr (1994) Joint investigations of the Middle Pliocene climate I: PRISM paleo-environmental reconstructions. Global Planet Change 9:169–195

    Article  Google Scholar 

  • Dowsett H, Barron J, Poore R (1996) Middle Pliocene sea surface temperatures: a global reconstruction. Mar Micropaleontol 27:13–26

    Article  Google Scholar 

  • Dowsett HJ, Barron JA, Poore RZ, Thompson RS, Cronin TM, Ishman SE, Willard DA (1999) Middle Pliocene paleoenvironmental reconstruction: PRISM2, U.S. Geol. Surv. Open File Rep., 99-535. http://pubs.usgs.gov/openfile/of99-535

  • Dowsett HJ, Robinson MM, Foley KM (2009) Pliocene three-dimensional global ocean temperature reconstruction. Clim Past 5:769–783

    Article  Google Scholar 

  • Edmond JM, Huh Y (2003) Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2. Earth Planet Sci Lett 216:125–139

    Article  CAS  Google Scholar 

  • European Union (2008) The 2°C target. Information Reference Document. http://ec.europa.eu/clima/policies/international/docs/brochure_2c.pdf

  • European Union (2010) Scientific Perspectives After Copenhagen. Information Reference Document. http://www.eutrio.be/files/bveu/media/documents/Scientific_Perspectives_After_Copenhagen.pdf

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record – influence of glacial melting rates on the Younger Dryas event and deep sea circulation. Nature 433:637–642

    Article  Google Scholar 

  • Gerlach T (2011) Volcanic versus anthropogenic carbon dioxide. Eos Trans Am Geophys Union 92:201–202

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472

    Article  Google Scholar 

  • Hansen JE (2005) A slippery slope: how much global warming constitutes “dangerous anthropogenic interference”? An editorial essay. Climatic Change 68:269–279

    Article  Google Scholar 

  • Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:024002, 6 pp

    Article  Google Scholar 

  • Hansen J (2009) Storms of my grandchildren: the truth about the coming climate catastrophe and our last chance to save humanity. Bloomsbury, New York, 304 pp

    Google Scholar 

  • Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213:957–966

    Article  CAS  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity, vol 5, Geophysical Monograph 29, Maurice Ewing. American Geophysical Union, Washington, DC, pp 130–163

    Chapter  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci USA 97:9875–9880

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M (2007a) Climate change and trace gases. Philos Trans R Soc A 365:1925–1954

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R et al (2007b) Dangerous human-made interference with climate: a GISS modelE study. Atmos Chem Phys 7:2287–2312

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R et al (2007c) Climate simulations for 1880-2003 with GISS modelE. Clim Dyn 29:661–696. doi:10.1007/s00382-007-0255-8

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  CAS  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004, 29 pp

    Article  Google Scholar 

  • Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676

    Article  CAS  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Article  CAS  Google Scholar 

  • Hewitt CD, Mitchell JFB (1997) Radiative forcing and response of a GCM to ice age boundary conditions: cloud feedback and climate sensitivity. Clim Dyn 13:821–834

    Article  Google Scholar 

  • Huybers P (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313:508–511

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 pp

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) In: Solomon S, Dahe Q, Manning M et al (eds) Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, 996 pp

    Google Scholar 

  • Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, Webb AT, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3:468–472

    Article  CAS  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796

    Article  CAS  Google Scholar 

  • Kent DV, Muttoni G (2008) Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci USA 105:16065–16070

    Article  CAS  Google Scholar 

  • Kohler P, Bintanja R, Fischer H, Joos F, Knutti R, Lohmann G, Masson-Delmotte V (2010) What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat Sci Rev 29:129–145

    Article  Google Scholar 

  • Kumar P, Yuan X, Kumar MR, Kind R, Li X, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Article  CAS  Google Scholar 

  • Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing Earth’s temperature. Science 330:356–359. doi:10.1126/science.1190653

    Article  CAS  Google Scholar 

  • Lea DW, Pak DK, Spero HJ (2000) Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289:1719–1723

    Article  Google Scholar 

  • Lea DW, Pak DK, Belanger CL, Spero HJ, Hall MA, Shackleton NJ (2006) Paleoclimate history of Galapagos surface waters over the last 135,000 years. Quat Sci Rev 25:1152–1167

    Article  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappelaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    Article  CAS  Google Scholar 

  • Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ (2010) Earth system sensitivity inferred from Pliocene modeling and data. Nat Geosci 3:60–64

    Article  CAS  Google Scholar 

  • Luthi D, Le Floch M, Bereiter B et al (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379–382

    Article  Google Scholar 

  • Manabe S, Stouffer R (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography 12:307–320

    Article  Google Scholar 

  • Markwick PJ (1998) Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using paleontological data in reconstructing palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 137:205–271. doi:10.1016/S0031-0182/(97)00108-9

    Article  Google Scholar 

  • Masson-Delmotte V, Stenni B, Pol K et al (2010) EPICA Dome C record of glacial and interglacial intensities. Quat Sci Rev 29:113–128

    Article  Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255

    Article  Google Scholar 

  • Medina-Elizade M, Lea DW (2005) The mid-Pleistocene transition in the tropical Pacific. Science 310:1009–1012

    Article  Google Scholar 

  • Milankovitch M (1941) Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeiten-problem. Royal Serbian Academy, Belgrade

    Google Scholar 

  • Mudelsee M (2001) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quat Sci Rev 20:583–589

    Article  Google Scholar 

  • Pagani M, Liu Z, LaRiviere J, Ravelo AC (2010) High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat Geosci 3:27–30

    Article  CAS  Google Scholar 

  • Park J, Royer DL (2011) Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. Am J Sci 311:1–26

    Article  CAS  Google Scholar 

  • Patriat P, Sloan H, Saunter D (2008) From slow to ultraslow: A previously undetected event at the Southwest Indian Ridge at ca. 24 Ma. Geology 36:207–210

    Article  Google Scholar 

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st century sea level rise. Science 321:1340–1343

    Article  CAS  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  CAS  Google Scholar 

  • Randall DA, Wood RA (2007) Climate models and their evaluation. In: Solomon S, Dahe Q, Manning M et al (eds) IPCC Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, 996 pp

    Google Scholar 

  • Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat Geosci 1:106–110

    Article  CAS  Google Scholar 

  • Roe G (2006) In defense of Milankovitch. Geophys Res Lett 33:L24703. doi:10.1029/2006GL027817

    Article  Google Scholar 

  • Rohling EJ, Grant K, Hemleben Ch, Siddall M, Hoogakker BAA, Bolshaw M, Kucera M (2008) High rates of sea-level rise during the last interglacial period. Nat Geosci 1:38–42

    Article  CAS  Google Scholar 

  • Rohling EJ, Grant K, Bolshaw M, Roberts AP, Siddall M, Hemleben Ch, Kucera M (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat Geosci 2:500–5004

    Article  CAS  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    Article  CAS  Google Scholar 

  • Royer DL, Pagani M, Beerling DJ (2011) Geologic constraints on earth system sensitivity to CO2 during the Cretaceous and early Paleogene. Earth Syst Dyn Discuss 2:211–240

    Article  Google Scholar 

  • Sackmann I-J, Boothroyd AI, Kraemer KE (1993) Our sun III. Present and future. Astrophys J 418:457–468

    Article  CAS  Google Scholar 

  • Saraswat R, Nigam R, Weldeab S, Mackensen A, Naidu PD (2005) A first look at past sea surface temperatures in the equatorial Indian Ocean from Mg/Ca in foraminifera. Geophys Res Lett 32:L24605, 4 pp

    Article  Google Scholar 

  • Sasgen I, Martinec Z, Bamber J (2010) Combined GRACE and InSAR estimate of West Antarctic ice mass loss. J Geophys Res 115:F04010. doi:10.1029/2009JF001525

    Article  Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE et al (2006) Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J Clim 19:153–192. doi:10.1175/JCLI3612.1

    Article  Google Scholar 

  • Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27:149–163

    Article  Google Scholar 

  • Schneider SH, Mastrandrea MD (2005) Probabilistic assessment of “dangerous” climate change and emissions pathways. Proc Natl Acad Sci USA 102:15728–15735

    Article  CAS  Google Scholar 

  • Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD (2010) Alkenone and boron-based Pliocene pCO2 records. Earth Planet Sci Lett 292:201–211

    Article  CAS  Google Scholar 

  • Shakun JD, Carlson AE (2010) A global perspective on Last Glacial Maximum to Holocene climate change. Quat Sci Rev 29:1801–1816

    Article  Google Scholar 

  • Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic ice sheet. Geophys Res Lett 31:L23402, 4 pp

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben Ch, Meischner D, Schmelzer I, Smeed D (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  CAS  Google Scholar 

  • Sorensen LS, Forsberg R (2010) Greenland ice sheet mass loss from GRACE monthly models. In: Gravity, geoid and earth observations, vol 135, International Association of Geodesy Symposia. Springer, Berlin, doi:10.1007/978-3-642-10634-7_70

    Google Scholar 

  • Staudigel H, Hart SR, Schmincke H-U, Smith BM (1989) Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing. Geochim Cosmochim Acta 53:3091–3094

    Article  CAS  Google Scholar 

  • Stockholm Memo (2011) Tipping the scales towards sustainability. In: 3rd Nobel Laureate symposium on global sustainability, Stockholm, 16–19 May 2011. http://globalsymposium2011.org/wp-content/uploads/2011/05/The-Stockholm-Memorandum.pdf

  • Valdes P (2011) Built for stability. Nat Geosci 4:414–416

    Article  CAS  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21527–21532

    Article  CAS  Google Scholar 

  • Vimeux F, Coffey KM, Jouzel J (2002) New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet Sci Lett 203:829–843

    Article  CAS  Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305

    Article  Google Scholar 

  • Wara MW, Ravelo A, Delaney ML (2005) Permanent El Nino-like conditions during the Pliocene warm period. Science 309:758–761

    Article  CAS  Google Scholar 

  • Wingham DJ, Wallis DW, Shepherd A (2009) The spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys Res Lett 36:L17501

    Article  Google Scholar 

  • Wunsch C (2003) The spectral description of climate change including the 100 ky energy. Clim Dyn 20:353–363

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank referee (Dana Royer) for helpful suggestions, Gerry Lenfest (Lenfest Foundation), Lee Wasserman (Rockefeller Family Foundation), Stephen Toben (Flora Family Foundation) and NASA program managers Jack Kaye and David Considine for research support, and Gavin Schmidt, Pushker Kharecha, Richard Alley, Christopher Barnet, Peter Barrett, Phil Blackwood, John Breithaupt, Tim Dean, Bruce Edwards, J. Gathright, Michael Le Page, Robert Maginnis, Jon Parker, Tom Parrett, Les Porter, Warwick Rowell, Ken Schatten, Colin Summerhayes, and Bart Verheggen for comments on a draft version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this paper

Cite this paper

Hansen, J.E., Sato, M. (2012). Paleoclimate Implications for Human-Made Climate Change. In: Berger, A., Mesinger, F., Sijacki, D. (eds) Climate Change. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0973-1_2

Download citation

Publish with us

Policies and ethics