Skip to main content

Gas-Phase Near-Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy of Nanoparticles, Biopolymers, and Ionic Species

  • Chapter
  • First Online:
X-ray and Neutron Techniques for Nanomaterials Characterization

Abstract

Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy probes directly or indirectly the photoabsorption cross section of a system under study as a function of the photon energy around the core–shell ionization thresholds. When the photon energy matches the difference between the core level and an unoccupied valence level, the photoabsorption cross section increases. The core levels are associated with particular atoms within the system under the study; therefore, NEXAFS spectroscopy appears to be a very sensitive probe of physicochemical and structural properties of molecules and materials. It has been intensively applied to investigate gaseous, liquid, and solid species. In this chapter, we describe methods to perform gas-phase NEXAFS spectroscopy of large systems, such as nanoparticles, clusters, and biopolymers, as well as of ionic species. We also review recent research findings.

The development of third-generation synchrotron radiation (SR) sources, providing extremely bright and energy-resolved X-ray beams, established NEXAFS spectroscopy as a powerful and widely used technique to investigate electronic and structural properties of both organic and inorganic samples of increasing complexity. Particularly, gas-phase NEXAFS studies allow for an investigation of well-defined targets prepared under desired conditions.

Unfortunately, gas-phase NEXAFS spectroscopy of large species such as biopolymers (e.g., proteins and DNA) and nanoparticles, as well as ionic species, is experimentally very challenging due to great difficulties in both bringing large molecules or particles intact into the gas phase and providing high-enough target density, photon flux, and interaction time needed to distinguish K-shell excitation processes. Only recently, the development of new experimental techniques has allowed performing gas-phase NEXAFS of nanoparticles, biopolymers, and ionic species.

Herein, we present the basic principles of NEXAFS spectroscopy and describe the state-of-the-art experimental approaches that allow for NEXAFS spectroscopy of large biopolymers and nanoparticles isolated in the gas phase. Finally, we present some key research finding spanning from relatively small biomolecules to large biopolymers and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stöhr J (1992) NEXAFS spectroscopy, vol 25, Springer series in surface sciences. Springer, Berlin

    Google Scholar 

  2. Hähner G (2006) Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem Soc Rev 35(12):1244–1255. doi:10.1039/b509853j

    Article  Google Scholar 

  3. Wu P, Yu Y, McGhee CE, Tan LH, Lu Y (2014) Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. Adv Mater 26(46):7849–7872. doi:10.1002/adma.201304891

    Article  Google Scholar 

  4. Brena B, Siegbahn PEM, Agren H (2012) Modeling near edge fine structure X-ray spectra of the manganese catalytic site for water oxidation in photosystem II. J Am Chem Soc. doi:10.1021/ja306794p

    Google Scholar 

  5. Zubavichus Y, Shaporenko A, Grunze M, Zharnikov M (2007) NEXAFS spectroscopy of homopolypeptides at all relevant absorption edges. J Phys Chem B 111(33):9803–9807

    Article  Google Scholar 

  6. Stewart-Ornstein J, Hitchcock AP, Hernández Cruz D, Henklein P, Overhage J, Hilpert K et al (2007) Using intrinsic X-ray absorption spectral differences to identify and map peptides and proteins. J Phys Chem B 111(26):7691–7699

    Article  Google Scholar 

  7. Zubavichus Y, Shaporenko A, Grunze M, Zharnikov M (2008) Is X-ray absorption spectroscopy sensitive to the amino acid composition of functional proteins? J Phys Chem B 112(15):4478–4480. doi:10.1021/jp801248n

    Article  Google Scholar 

  8. Aziz EF (2011) X-ray spectroscopies revealing the structure and dynamics of metalloprotein active centers. J Phys Chem Lett 2(4):320–326. doi:10.1021/jz1014778

    Article  Google Scholar 

  9. Baio JE, Jaye C, Fischer DA, Weidner T (2014) High-throughput analysis of molecular orientation on surfaces by NEXAFS imaging of curved sample arrays. ACS Comb Sci 16(9):449–453. doi:10.1021/co5001162

    Article  Google Scholar 

  10. Milosavljević AR, Canon F, Nicolas C, Miron C, Nahon L, Giuliani A (2012) Gas-phase protein inner-shell spectroscopy by coupling an ion trap with a soft X-ray beamline. J Phys Chem Lett 3(9):1191–1196. doi:10.1021/jz300324z

    Article  Google Scholar 

  11. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1990) Electrospray ionization-principles and practice. Mass Spectrom Rev 9(1):37–70. doi:10.1002/mas.1280090103

    Article  Google Scholar 

  12. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511

    Article  Google Scholar 

  13. Milosavljević AR, Nicolas C, Ranković MLJ, Canon F, Miron C, Giuliani A (2015) K-shell excitation and ionization of a gas-phase protein: interplay between electronic structure and protein folding. J Phys Chem Lett 6:3132. doi:10.1021/acs.jpclett.5b01288

    Google Scholar 

  14. Ivanenko DD, Pommeranchuck I (1944) On the maximal energy, obtainable in a betatron. Phys Rev 65:343

    Article  Google Scholar 

  15. Schwinger J (1949) Phys Rev 75:1912

    Article  Google Scholar 

  16. Schwinger J (1946) Electron radiation in high energy accelerators. Phys Rev 70:798

    Google Scholar 

  17. Hartman P, Tomboulian D (1952) Ultraviolet radiation from the Cornell synchrotron. Phys Rev 87(1):233

    Google Scholar 

  18. Codling K, Madden RP (1965) Characteristics of the “synchrotron light” from the NBS 180-MeV machine. J Appl Phys 36(2):380

    Article  Google Scholar 

  19. Madden RP, Codling K (1964) Recently discovered auto-ionizing states of krypton and xenon in the λ380–600-Å region. J Opt Soc Am 54(2):268

    Article  Google Scholar 

  20. Madden RP, Codling K (1963) New autoionizing atomic energy levels in He, Ne, and Ar. Phys Rev Lett 10(12):516. doi:10.1103/PhysRevLett.10.516

    Article  Google Scholar 

  21. Kuntz C, Rowe EM, Gudat W, Kotani A, Toyozawa Y, Codling K et al (1979) Synchrotron radiation techniques and applications. In: Kuntz C (ed) Topics in current physics. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  22. Motz H (1951) Applications of the radiation from fast electron beams. J Appl Phys 22(5):527

    Article  Google Scholar 

  23. Motz H, Thon W, Whitehurst RN (1953) Experiments on radiation by fast electron beams. J Appl Phys 24(7):826

    Article  Google Scholar 

  24. Winick H, Brown G, Halbach K, Harris J (1981) Wiggler and undulator magnets. Phys Today 34(5):50. doi:10.1063/1.2914568

    Article  Google Scholar 

  25. David A (2000) Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  26. Borland M (2013) Progress toward an ultimate storage ring light source. J Phys Conf Ser 425:042016

    Article  Google Scholar 

  27. Johansson LC, Arnlund D, White TA, Katona G, Deponte DP, Weierstall U et al (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9(3):263–265

    Article  Google Scholar 

  28. Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ, Malmerberg E, Neutze R et al (2014) Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat Methods 11(9):923–926. doi:10.1038/nmeth.3067

    Article  Google Scholar 

  29. Seibert MM, Ekeberg T, Maia FR, Svenda M, Andreasson J, Jönsson O et al (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(7332):78–81

    Article  Google Scholar 

  30. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Spence JC et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332):73–77

    Article  Google Scholar 

  31. Koopmann R, Cupelli K, Redecke L (2012) In vivo protein crystallization opens new routes in structural biology. Nat Methods 9(3):259

    Article  Google Scholar 

  32. Loh ND, Hampton CY, Martin AV, Starodub D, Sierra RG, Barty A et al (2012) Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486(7404):513–517

    Article  Google Scholar 

  33. Hitchcock AP, Beaulieu S, Steel T, Stöhr J, Sette F (1984) Carbon K-shell electron energy loss spectra of 1- and 2-butenes, trans-1,3-butadiene, and perfluoro-2-butene. Carbon–carbon bond lengths from continuum shape resonances. J Chem Phys 80(9):3927

    Article  Google Scholar 

  34. Sette F, Stöhr J, Hitchcock AP (1984) Determination of intramolecular bond lengths in gas phase molecules from K shell shape resonances. J Chem Phys 81(11):4906

    Article  Google Scholar 

  35. Stöhr J, Gland J, Kollin E, Koestner R, Johnson A, Muetterties E, Sette F (1984) Desulfurization and structural transformation of thiophene on the Pt(111) surface. Phys Rev Lett 53(22):2161–2164

    Article  Google Scholar 

  36. Guillemin R, Stolte WC, Piancastelli MN, Lindle DW (2010) Jahn-Teller coupling and fragmentation after core-shell excitation in CF_{4} investigated by partial-ion-yield spectroscopy. Phys Rev A 82(4):043427. doi:10.1103/PhysRevA.82.043427

    Article  Google Scholar 

  37. Piancastelli M (1999) The neverending story of shape resonances. J Electron Spectrosc Relat Phenom 100(1–3):167–190. doi:10.1016/S0368-2048(99)00046-8

    Article  Google Scholar 

  38. Guillemin R, Stolte WC, Lindle DW (2009) Fragmentation of formic acid following photoexcitation around the carbon K edge. J Phys B Atomic Mol Phys 42(12):125101. doi:10.1088/0953-4075/42/12/125101

    Article  Google Scholar 

  39. Kock E-E (ed) (1983) Handbook on synchrotron radiation. North Holland Pub Co, Amsterdam

    Google Scholar 

  40. Quack M, Merkt F (eds) (2011) Handbook of high-resolution spectroscopy. John Wiley, New York, p 2182

    Google Scholar 

  41. Bagus PS, Ilton ES, Nelin CJ (2013) The interpretation of XPS spectra: insights into materials properties. Surf Sci Rep 68(2):273–304

    Article  Google Scholar 

  42. Ueda K (2003) High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources. J Phys B Atomic Mol Phys 36(4):R1–R47. doi:10.1088/0953-4075/36/4/201

    Article  Google Scholar 

  43. Miron C, Morin P (2011) High-resolution inner-shell photo-ionization photoelectron and coincidence spectroscopy. In: Quack M, Merkt F (eds) Handbook of high-resolution spectroscopy, vol 3. John Wiley, New York, pp 1655–1689

    Google Scholar 

  44. Björneholm O, Öhrwall G, Tchaplyguine M (2009) Free clusters studied by core-level spectroscopies. Nucl Instrum Methods Phys Res, Sect A 601(1–2):161–181. doi:10.1016/j.nima.2008.12.222

    Article  Google Scholar 

  45. Makarova AA, Grachova EV, Krupenya DV, Vilkov O, Fedorov A, Usachov D et al (2014) Insight into the electronic structure of the supramolecular “rods-in-belt” AuICuI and AuIAgI self-assembled complexes from X-ray photoelectron and absorption spectroscopy. J Electron Spectrosc Relat Phenom 192:26–34

    Article  Google Scholar 

  46. Miron C, Patanen M (2014) Synchrotron-radiation-based soft X-ray electron spectroscopy applied to structural and chemical characterization of isolated species, from molecules to nanoparticles. Adv Mater 26:7911–7916. doi:10.1002/adma.201304837

    Article  Google Scholar 

  47. Schramm T, Ganteför G, Bodi A, Hemberger P, Gerber T, von Issendorff B (2014) Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation. Appl Phys A 115(3):771–779. doi:10.1007/s00339-014-8434-z

    Article  Google Scholar 

  48. Tchaplyguine M, Peredkov S, Rosso A, Schulz J, Öhrwall G, Lundwall M et al (2007) Direct observation of the non-supported metal nanoparticle electron density of states by X-ray photoelectron spectroscopy. Eur Phys J D 45(2):295–299

    Article  Google Scholar 

  49. Tchaplyguine M, Zhang C, Andersson T, Björneholm O (2014) Tuning the oxidation degree in sub-10nm silver-oxide nanoparticles: from Ag2O monoxide to AgOx(x > 1) superoxide. Chem Phys Lett 600:96–102

    Article  Google Scholar 

  50. Bahn J, Oelßner P, Köther M, Braun C, Senz V, Palutke S et al (2012) Pb 4f photoelectron spectroscopy on mass-selected anionic lead clusters at FLASH. New J Phys 14(7):075008

    Article  Google Scholar 

  51. Sublemontier O, Nicolas C, Aureau D, Patanen M, Kintz H, Liu X et al (2014) X-ray photoelectron spectroscopy of isolated nanoparticles. J Phys Chem Lett 5(19):3399–3403

    Article  Google Scholar 

  52. Antonsson E, Bresch H, Lewinski R (2013) Free nanoparticles studied by soft X-rays. Chem Phys Lett 559:1–11

    Article  Google Scholar 

  53. Baer DR, Engelhard MH (2010) XPS analysis of nanostructured materials and biological surfaces. J Electron Spectrosc Relat Phenom 178–179:415–432

    Article  Google Scholar 

  54. Meinen J, Khasminskaya S, Eritt M, Leisner T, Antonsson E, Langer B, Rühl E (2010) Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation. Rev Sci Instrum 81(8):085107

    Article  Google Scholar 

  55. Mysak ER, Starr DE, Wilson KR, Bluhm H (2010) Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces. Rev Sci Instrum 81(1):016106

    Article  Google Scholar 

  56. Wilson KR, Bluhm H, Ahmed M (2011) Fundamentals and applications in aerosol spectroscopy, “Aerosol photoemission”, fundamentals and applications in aerosol spectroscopy. In: Signorell R, Reid JR (eds). Taylor & Francis Inc, Philadelphia, p 367

    Google Scholar 

  57. Shigemasa E, Adachi J, Oura M, Yagishita A (1995) Angular distributions of 1sσ{} photoelectrons from fixed-in-space {\mathrm{ N}}_{2} molecules. Phys Rev Lett 74(3):359–362. doi:10.1103/PhysRevLett.74.359

    Article  Google Scholar 

  58. Dörner R, Bräuning H, Feagin JM, Mergel V, Jagutzki O, Spielberger L et al (1998) Photo-double-ionization of He: fully differential and absolute electronic and ionic momentum distributions. Phys Rev A 57(2):1074–1090. doi:10.1103/PhysRevA.57.1074

    Article  Google Scholar 

  59. Ueda K, Simon M, Miron C, Leclercq N, Guillemin R, Morin P, Tanaka S (1999) Correlation between nuclear motion in the core-excited CF4 molecule and molecular dissociation after resonant auger decay. Phys Rev Lett 83(19):3800–3803

    Article  Google Scholar 

  60. Prümper G, Carravetta V, Muramatsu Y, Tamenori Y, Kitajima M, Tanaka H et al (2007) Electron transfer during the dissociation of CH_{3}F^{+} produced by resonant photoemission following F 1s excitation. Phys Rev A 76(5):52705. doi:10.1103/PhysRevA.76.052705

    Article  Google Scholar 

  61. Liu XJ, Prümper G, Kukk E, Sankari R, Hoshino M, Makochekanwa C et al (2005) Site-selective ion production of the core-excited CH_{3}F molecule probed by Auger-electron--ion coincidence measurements. Phys Rev A 72(4):42704. doi:10.1103/PhysRevA.72.042704

    Article  Google Scholar 

  62. Miron C, Morin P (2009) High-resolution inner-shell coincidence spectroscopy. Nucl Instrum Methods Phys Res Sect A, 601(1–2, Sp. Iss. SI):66–77. doi:10.1016/j.nima.2008.12.104

    Google Scholar 

  63. Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H (2000) Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys Rep 330(2–3):95–192. doi:10.1016/S0370-1573(99)00109-X

    Article  Google Scholar 

  64. Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt LPH, Schmidt-Böcking H (2003) Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep Prog Phys 66:1463. doi:10.1088/0034-4885/66/9/203

    Article  Google Scholar 

  65. Ceolin D, Miron C, Simon M, Morin P (2004) Auger electron-ion coincidence studies to probe molecular dynamics. J Electron Spectrosc Relat Phenom, 141(2–3, Sp. Iss. SI):171–181. doi:10.1016/j.elspec.2004.06.014

    Google Scholar 

  66. Rühl E, Schmale C, Schmelz HC, Baumgärtel H (1992) The double ionization potentials of argon clusters. Chem Phys Lett 191(5):430–434

    Article  Google Scholar 

  67. Mucke M, Braune M, Barth S, Förstel M, Lischke T, Ulrich V et al (2010) A hitherto unrecognized source of low-energy electrons in water. Nat Phys 6(2):143–146

    Article  Google Scholar 

  68. Biester H, Besnard M, Dujardin G, Hellner L, Koch E (1987) Photoemission of pairs of electrons from rare-gas solids. Phys Rev Lett 59(12):1277–1280

    Article  Google Scholar 

  69. Herrmann R, Samarin S, Schwabe H, Kirschner J (1998) Two electron photoemission in solids. Phys Rev Lett 81(10):2148–2151. doi:10.1103/PhysRevLett.81.2148

    Article  Google Scholar 

  70. Huth M, Chiang C-T, Trützschler A, Schumann FO, Kirschner J, Widdra W (2014) Electron pair emission detected by time-of-flight spectrometers: recent progress. Appl Phys Lett 104(6):061602

    Article  Google Scholar 

  71. Schumann FO, Behnke L, Li CH, Kirschner J (2013) Exploring highly correlated materials via electron pair emission: the case of NiO/Ag(100). J Phys Condens Matter 25(9):094002. doi:10.1088/0953-8984/25/9/094002

    Article  Google Scholar 

  72. Giuliani A, Milosavljević AR, Canon F, Nahon L (2014) Contribution of synchrotron radiation to photoactivation studies of biomolecular ions in the gas phase. Mass Spectrom Rev 33(6):424–441. doi:10.1002/mas.21398

    Article  Google Scholar 

  73. González-Magaña O, Reitsma G, Tiemens M, Boschman L, Hoekstra R, Schlathölter T (2012) Near-edge X-ray absorption mass spectrometry of a gas-phase peptide. J Phys Chem A 116(44):10745–10751. doi:10.1021/jp307527b

    Article  Google Scholar 

  74. Baer T, Dunbar RC (2010) Ion spectroscopy: where did it come from; where is it now; and where is it going? J Am Soc Mass Spectrom 21(5):681–693. doi:10.1016/j.jasms.2010.01.028

    Article  Google Scholar 

  75. Lucas CB (2013) Atomic and molecular beams: production and collimation. CRC Press, 6000 Broken Sound Pkwy NW - Boca Raton FL, p 392

    Google Scholar 

  76. Touboul D, Gaie-Levrel F, Garcia GA, Nahon L, Poisson L, Schwell M, Hochlaf M (2013) VUV photoionization of gas phase adenine and cytosine: a comparison between oven and aerosol vaporization. J Chem Phys 138(9):094203. doi:10.1063/1.4793734

    Article  Google Scholar 

  77. Bernstein ER (1990) Atomic and molecular clusters. In: Bernstein ER (ed). Elsevier, Amsterdam/Oxford/New York/Tokyo, p 805

    Google Scholar 

  78. Wegner K, Piseri P, Tafreshi HV, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D Appl Phys 39(22):R439–R459

    Article  Google Scholar 

  79. Lindblad A, Söderström J, Nicolas C, Robert E, Daniel G, Miron C (2013) A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: cold molecules, clusters, and nanoparticles. Rev Sci Instrum 84:113105. doi:10.1063/1.4829718

    Google Scholar 

  80. Wilson KR, Jimenez-Cruz M, Nicolas C, Belau L, Leone SR, Ahmed M (2006) Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine- glycine, and β-carotene. J Phys Chem A 110(6):2106–2113

    Article  Google Scholar 

  81. Wilson KR, Belau L, Nicolas C, Jimenez-Cruz M, Leone SR, Ahmed M (2006) Direct determination of the ionization energy of histidine with VUV synchrotron radiation. Int J Mass Spectrom 249–250:155–161

    Article  Google Scholar 

  82. Gaie-Levrel F, Garcia GA, Schwell M, Nahon L (2011) VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine. Phys Chem Chem Phys 13(15):7024–7036

    Article  Google Scholar 

  83. Tia M, Cunha de Miranda B, Daly S, Gaie-Levrel F, Garcia GA, Nahon L, Powis I (2014) VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers. J Phys Chem A 118(15):2765–2779

    Article  Google Scholar 

  84. Isaacman G, Wilson KR, Chan AWH, Worton DR, Kimmel JR, Nah T et al (2012) Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass spectrometry. Anal Chem 84(5):2335–2342

    Article  Google Scholar 

  85. Liu P, Ziemann PJ, Kittelson DB, McMurry PH (1995) Generating particle beams of controlled dimensions and divergence. 1. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci Technol 22(3):293–313. doi:10.1080/02786829408959748

    Article  Google Scholar 

  86. Liu P, Ziemann PJ, Kittelson DB, McMurry PH (1995) Generating particle beams of controlled dimensions and divergence. 2. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci Technol 22(3):314–324. doi:10.1080/02786829408959749

    Article  Google Scholar 

  87. Zhang XF, Smith KA, Worsnop DR, Jimenez JL, Jayne JT, Kolb CE et al (2004) Numerical characterization of particle beam collimation: part II – integrated aerodynamic-lens-nozzle system. Aerosol Sci Technol 38(6):619–638. doi:10.1080/02786820490479833

    Article  Google Scholar 

  88. Zhang XF, Smith KA, Worsnop DR, Jimenez J, Jayne JT, Kolb CE (2002) A numerical characterization of particle beam collimation by an aerodynamic lens-nozzle system: part I. An individual lens or nozzle. Aerosol Sci Technol 36(5):617–631. doi:10.1080/02786820252883856

    Article  Google Scholar 

  89. Jayne JT, Leard DC, Zhang XF, Davidovits P, Smith KA, Kolb CE, Worsnop DR (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol 33(1–2):49–70. doi:10.1080/027868200410840

    Article  Google Scholar 

  90. Headrick JM, Schrader PE, Michelsen HA (2013) Radial-profile and divergence measurements of combustion-generated soot focused by an aerodynamic-lens system. J Aerosol Sci 58:158–170. doi:10.1016/j.jaerosci.2013.01.002

    Article  Google Scholar 

  91. Wang X, Kruis FE, McMurry PH (2005) Aerodynamic focusing of nanoparticles: I. Guidelines for designing aerodynamic lenses for nanoparticles. Aerosol Sci Tech 39(7):611–623

    Article  Google Scholar 

  92. Tafreshi HV, Benedek G, Piseri P, Vinati S, Barborini E, Milani P (2002) A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing. Aerosol Sci Tech 36(5):593–606

    Article  Google Scholar 

  93. Lee D, Lee KS (2010) Aerodynamic lens. Google Patents, US 7652247 B2

    Google Scholar 

  94. Wang X, Gidwani A, Girshick S, McMurry P (2005) Aerodynamic focusing of nanoparticles: II. Numerical simulation of particle motion through aerodynamic lenses. Aerosol Sci Technol 39(7):624–636

    Article  Google Scholar 

  95. Tafreshi H, Piseri P, Barborini E, Benedek G, Milani P (2002) Simulation on the effect of Brownian motion on nanoparticle trajectories in a pulsed microplasma cluster source. J Nanoparticle Res 4(6):511–524

    Article  Google Scholar 

  96. Lewinski R, Graf C, Langer B, Flesch R, Bresch H, Wassermann B, Rühl E (2009) Size-effects in clusters and free nanoparticles probed by soft X-rays. Eur Phys J Spec Top 169(1):67–72

    Article  Google Scholar 

  97. Shrivastava M, Gidwani A, Jung HS (2009) Modeling oxidation of soot particles within a laminar aerosol flow reactor using computational fluid dynamics. Aerosol Sci Tech 43(12):1218–1229

    Article  Google Scholar 

  98. Wang X, McMurry PH, Kruis E (2009) Aerodynamic focusing of nanoparticle or cluster beams. Google Patents, US 7476851 B2

    Google Scholar 

  99. Piseri P, Tafreshi HV, Milani P (2004) Manipulation of nanoparticles in supersonic beams for the production of nanostructured materials. Curr Opin Solid State Mater Sci 8(3–4):195–202

    Article  Google Scholar 

  100. Piseri P, Podestà A, Barborini E, Milani P (2001) Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Rev Sci Instrum 72(5):2261

    Article  Google Scholar 

  101. Martinez F, Bandelow S, Breitenfeldt C, Marx G, Schweikhard L, Vass A, Wienholtz F (2014) Upgrades at ClusterTrap and latest results. Int J Mass Spectrom 365–366:266–274

    Article  Google Scholar 

  102. Sturm S, Wagner A, Schabinger B, Blaum K (2011) Phase-sensitive cyclotron frequency measurements at ultralow energies. Phys Rev Lett 107(14):143003

    Article  Google Scholar 

  103. Grimm M, Langer B, Schlemmer S, Lischke T, Becker U, Widdra W et al (2006) Charging mechanisms of trapped element-selectively excited nanoparticles exposed to soft X rays. Phys Rev Lett 96(6):066801

    Article  Google Scholar 

  104. Gerlich D (2003) Molecular ions and nanoparticles in RF and AC traps. Hyperfine Interact 146/147(1–4):293–306

    Google Scholar 

  105. Shu J, Wilson KR, Ahmed M, Leone SR (2006) Coupling a versatile aerosol apparatus to a synchrotron: vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry. Rev Sci Instrum 77(4):043106

    Article  Google Scholar 

  106. Thissen R, Bizau J, Blancard C, Coreno M, Dehon C, Franceschi P et al (2008) Photoionization cross section of Xe+ ion in the pure 5p5 P3/22 ground level. Phys Rev Lett 100(22):223001. doi:10.1103/PhysRevLett.100.223001

    Article  Google Scholar 

  107. Marrs R, Elliott S, Knapp D (1994) Production and trapping of hydrogenlike and bare uranium ions in an electron beam ion trap. Phys Rev Lett 72(26):4082–4085. doi:10.1103/PhysRevLett.72.4082

    Article  Google Scholar 

  108. Epp S, López-Urrutia J, Brenner G, Mäckel V, Mokler P, Treusch R et al (2007) Soft X-Ray laser spectroscopy on trapped highly charged ions at FLASH. Phys Rev Lett 98(18):183001. doi:10.1103/PhysRevLett.98.183001

    Article  Google Scholar 

  109. Hirsch K, Lau JT, Klar P, Langenberg A, Probst J, Rittmann J et al (2009) X-ray spectroscopy on size-selected clusters in an ion trap: from the molecular limit to bulk properties. J Phys B Atomic Mol Phys 42(15):154029. doi:10.1088/0953-4075/42/15/154029

    Article  Google Scholar 

  110. Heiz U, Vanolli F, Trento L, Schneider W-D (1997) Chemical reactivity of size-selected supported clusters: an experimental setup. Rev Sci Instrum 68(5):1986. doi:10.1063/1.1148113

    Article  Google Scholar 

  111. Reitsma G, Boschman L, Deuzeman MJ, Hoekstra S, Hoekstra R, Schlathölter T (2015) Near edge X-ray absorption mass spectrometry on coronene. J Chem Phys 142(2):024308. doi:10.1063/1.4905471

    Article  Google Scholar 

  112. Ryding MJ, Giuliani A, Patanen M, Niskanen J, Simões G, Miller GBS et al (2014) X-ray induced fragmentation of size-selected salt cluster-ions stored in an ion trap. RSC Adv 4(88):47743–47751. doi:10.1039/C4RA09787D

    Article  Google Scholar 

  113. Cole RB (2010) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications, 2nd edn. Wiley, Hoboken, p 896

    Book  Google Scholar 

  114. Cox JT, Marginean I, Smith RD, Tang K (2015) On the ionization and ion transmission efficiencies of different ESI-MS interfaces. J Am Soc Mass Spectrom 26(1):55–62. doi:10.1007/s13361-014-0998-5

    Article  Google Scholar 

  115. Robb D, Covey T, Bruins A (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal Chem 72(15):3653–3659

    Article  Google Scholar 

  116. Song L, Wellman AD, Yao H, Adcock J (2007) Electron capture atmospheric pressure photoionization mass spectrometry: analysis of fullerenes, perfluorinated compounds, and pentafluorobenzyl derivatives. Rapid Commun Mass Spectrom 21(8):1343–1351. doi:10.1002/rcm.2963

    Article  Google Scholar 

  117. Peart B, Stevenson JG, Dolder KT (1973) Measurements of cross sections for the ionization of Ba+ by energy resolved electrons. J Phys B Atomic Mol Phys 6(1):146–149. doi:10.1088/0022-3700/6/1/016

    Article  Google Scholar 

  118. Lyon IC, Peart B, West JB, Dolder K (1986) Measurements of absolute cross sections for the photoionisation of Ba+ ions. J Phys B Atomic Mol Phys 19(24):4137–4147. doi:10.1088/0022-3700/19/24/015

    Article  Google Scholar 

  119. Kjeldsen H, Folkmann F, Elp JV, Knudsen H, West JB, Andersen T (2005) Absolute measurements of photoionization cross-sections for ions. Nucl Instrum Methods Phys Res Sect B 234(3):349–361. doi:10.1016/j.nimb.2005.01.011

    Article  Google Scholar 

  120. Kjeldsen H (2006) Photoionization cross sections of atomic ions from merged-beam experiments. J Phys B Atomic Mol Phys 39(21):R325–R377. doi:10.1088/0953-4075/39/21/R01

    Article  Google Scholar 

  121. Bizau JM, Cubaynes D, Al Shorman MM, Guilbaud S, Blancard C, Lemaire J et al (2012) Photoionization of atomic and molecular positively charged ions. J Phys Conf Ser 399:012002. doi:10.1088/1742-6596/399/1/012002

    Article  Google Scholar 

  122. Gharaibeh MF, Bizau JM, Cubaynes D, Guilbaud S, El Hassan N, Al Shorman MM et al (2011) K-shell photoionization of singly ionized atomic nitrogen: experiment and theory. J Phys B Atomic Mol Phys 44:175208. doi:10.1088/0953-4075/44/17/175208

    Article  Google Scholar 

  123. Bizau JM, Blancard C, Coreno M, Cubaynes D, Dehon C, El Hassan N et al (2011) Photoionization study of Kr+ and Xe+ ions with the combined use of a merged-beam set-up and an ion trap. J Phys B Atomic Mol Phys 44(5):055205. doi:10.1088/0953-4075/44/5/055205

    Article  Google Scholar 

  124. Bizau JM, Cubaynes D, Richter M, Wuilleumier F, Obert J, Putaux JC (1992) The combined use of a singly charged ion-beam and undulator radiation for photoelectron spectrometry studies on atomic ions. Rev Sci Instrum 63:1389–1392, Univ Paris 11, Inst Phys Nucl, F-91405 Orsay, France

    Article  Google Scholar 

  125. Bizau JM, Cubaynes D, Richter M, Wuilleumier FJ, Obert J, Putaux JC et al (1991) First observation of photoelectron spectra emitted in the photoionization of a singly charged-ion beam with synchrotron radiation. Phys Rev Lett 67(5):576–579

    Article  Google Scholar 

  126. Senz V, Fischer T, Oelßner P, Tiggesbäumker J, Stanzel J, Bostedt C et al (2009) Core-Hole Screening as a Probe for a Metal-to-Nonmetal Transition in Lead Clusters. Phys Rev Lett 102(13):138303. doi:10.1103/PhysRevLett.102.138303

    Article  Google Scholar 

  127. Dunbar RC (2014) In the beginning was H2+: mass spectrometry and the molecular spectroscopy of gas-phase ions. Int J Mass Spectrom. doi:10.1016/j.ijms.2014.07.049

    Google Scholar 

  128. Dunbar RC (2000) Photodissociation of trapped ions. Int J Mass Spectrom 200:571–589

    Article  Google Scholar 

  129. Antoine R, Dugourd P (2011) Visible and ultraviolet spectroscopy of gas phase protein ions. Phys Chem Chem Phys 13(37):16494–16509. doi:10.1039/c1cp21531k

    Article  Google Scholar 

  130. Peredkov S, Neeb M, Eberhardt W, Meyer J, Tombers M, Kampschulte H, Niedner-Schatteburg G (2011) Spin and orbital magnetic moments of free nanoparticles. Phys Rev Lett 107(23):233401. doi:10.1103/PhysRevLett.107.233401

    Article  Google Scholar 

  131. Peredkov S, Savci A, Peters S, Neeb M, Eberhardt W, Kampschulte H et al (2011) X-ray absorption spectroscopy of mass-selected transition metal clusters using a cyclotron ion trap: an experimental setup for measuring XMCD spectra of free clusters. J Electron Spectrosc Relat Phenom 184(3–6):113–118. doi:10.1016/j.elspec.2010.12.031

    Article  Google Scholar 

  132. González-Magaña O, Tiemens M, Reitsma G, Boschman L, Door M, Bari S et al (2013) Fragmentation of protonated oligonucleotides by energetic photons and Cq+ ions. Phys Rev A 87(3):032702. doi:10.1103/PhysRevA.87.032702

    Article  Google Scholar 

  133. Lau JT, Rittmann J, Zamudio-Bayer V, Vogel M, Hirsch K, Klar P et al (2008) Size dependence of L2,3 branching ratio and 2p core-hole screening in X-ray absorption of metal clusters. Phys Rev Lett 101(15):153401. doi:10.1103/PhysRevLett.101.153401

    Article  Google Scholar 

  134. Kravis SD, Church D, Johnson B, Meron M, Jones K, Levin J et al (1991) Inner-shell photoionization of stored positive ions using synchrotron radiation. Phys Rev Lett 66(23):2956–2959. doi:10.1103/PhysRevLett.66.2956

    Article  Google Scholar 

  135. Bari S, Gonzalez-Magaña O, Reitsma G, Werner J, Schippers S, Hoekstra R, Schlathölter T (2011) Photodissociation of protonated leucine-enkephalin in the VUV range of 8–40 eV. J Chem Phys 134(2):024314. doi:10.1063/1.3515301

    Article  Google Scholar 

  136. González-Magaña O, Reitsma G, Bari S, Hoekstra R, Schlathölter T (2012) Length effects in VUV photofragmentation of protonated peptides. Phys Chem Chem Phys 14(13):4351–4354. doi:10.1039/c2cp23470j

    Article  Google Scholar 

  137. Milosavljević AR, Nicolas C, Gil J, Canon F, Réfrégiers M, Nahon L, Giuliani A (2012) VUV synchrotron radiation: a new activation technique for tandem mass spectrometry. J Synchrotron Radiat 19(Pt 2):174–178. doi:10.1107/S0909049512001057

    Article  Google Scholar 

  138. Schwartz JC, Senko MW (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13(6):659–669. doi:10.1016/S1044-0305(02)00384-7

    Google Scholar 

  139. Thelen JJ, Miernyk JA (2012) The proteomic future: where mass spectrometry should be taking us. Biochem J 444(2):169–181

    Article  Google Scholar 

  140. Canon F, Milosavljević AR, van der Rest G, Réfrégiers M, Nahon L, Sarni-Manchado P et al (2013) Photodissociation and dissociative photoionization mass spectrometry of proteins and noncovalent protein-ligand complexes. Angew Chem Int Ed Engl 52(32):8377–8381. doi:10.1002/anie.201304046

    Article  Google Scholar 

  141. Canon F, Milosavljevic AR, Nahon L, Giuliani A (2015) Action spectroscopy of a protonated peptide in the ultraviolet range. Phys Chem Chem Phys. doi:10.1039/C4CP04762A

    Google Scholar 

  142. Giuliani A, Milosavljević AR, Hinsen K, Canon F, Nicolas C, Réfrégiers M, Nahon L (2012) Structure and charge-state dependence of the gas-phase ionization energy of proteins. Angew Chem Int Ed Engl 51(38):9552–9556. doi:10.1002/anie.201204435

    Article  Google Scholar 

  143. Milosavljević AR, Nicolas C, Lemaire J, Dehon C, Thissen R, Bizau J-M et al (2011) Photoionization of a protein isolated in vacuo. Phys Chem Chem Phys 13(34):15432–15436. doi:10.1039/c1cp21211g

    Article  Google Scholar 

  144. Milosavljević AR, Giuliani A, Nicolas C, Gil J-F, Lemaire J, Réfrégiers M, Nahon L (2010) Gas-phase spectroscopy of a protein. J Phys Conf Ser 257(1992):012006. doi:10.1088/1742-6596/257/1/012006

    Article  Google Scholar 

  145. Milosavljević AR, Cerovski VZ, Canon F, Nahon L, Giuliani A (2013) Nanosolvation-induced stabilization of a protonated peptide dimer isolated in the gas phase. Angew Chem Int Ed Engl 52(28):7286–7290. doi:10.1002/anie.201301667

    Article  Google Scholar 

  146. Milosavljević AR, Cerovski VZ, Canon F, Ranković ML, Škoro N, Nahon L, Giuliani A (2014) Energy-dependent UV photodissociation of gas-phase adenosine monophosphate nucleotide ions: the role of a single solvent molecule. J Phys Chem Lett 5:1994–1999. doi:10.1021/jz500696b

    Article  Google Scholar 

  147. Bolognesi P, Mattioli G, O’Keeffe P, Feyer V, Plekan O, Ovcharenko Y et al (2009) Investigation of halogenated pyrimidines by X-ray photoemission spectroscopy and theoretical DFT methods. J Phys Chem A 113(48):13593–13600. doi:10.1021/jp908512v

    Article  Google Scholar 

  148. Bolognesi P, O’Keeffe P, Ovcharenko Y, Coreno M, Avaldi L, Feyer V et al (2010) Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory. J Chem Phys 133(3):034302. doi:10.1063/1.3442489

    Article  Google Scholar 

  149. Bolognesi P, O’Keeffe P, Feyer V, Plekan O, Prince K, Coreno M et al (2010) Inner shell excitation, ionization and fragmentation of pyrimidine. J Phys Conf Ser 212:012002. doi:10.1088/1742-6596/212/1/012002

    Article  Google Scholar 

  150. Feyer V, Plekan O, Richter R, Coreno M, Vall-llosera G, Prince KC et al (2009) Tautomerism in cytosine and uracil: an experimental and theoretical core level spectroscopic study. J Phys Chem A 113(19):5736–5742. doi:10.1021/jp900998a

    Article  Google Scholar 

  151. Plekan O, Feyer V, Richter R, Coreno M, Vall-Llosera G, Prince KC et al (2009) An experimental and theoretical core-level study of tautomerism in guanine. J Phys Chem A 113(33):9376–9385. doi:10.1021/jp903209t

    Article  Google Scholar 

  152. Feyer V, Plekan O, Richter R, Coreno M, de Simone M, Prince KC et al (2010) Tautomerism in cytosine and uracil: a theoretical and experimental X-ray absorption and resonant auger study. J Phys Chem A 114(37):10270–10276. doi:10.1021/jp105062c

    Article  Google Scholar 

  153. Giuliano BM, Feyer V, Prince KC, Coreno M, Evangelisti L, Melandri S, Caminati W (2010) Tautomerism in 4-hydroxypyrimidine, S-methyl-2-thiouracil, and 2-thiouracil. J Phys Chem A 114:12725–12730

    Article  Google Scholar 

  154. Feyer V, Plekan O, Kivim A, Prince KC, Moskovskaya TE, Zaytseva IL et al (2011) Comprehensive core-level study of the effects of isomerism halogenation, and methylation on the tautomeric equilibrium of cytosine. J Phys Chem A 115(26):7722–7733

    Article  Google Scholar 

  155. Hua W, Gao B, Li S, Ågren H, Luo Y (2010) Refinement of DNA structures through near-edge X-ray absorption fine structure analysis: applications on guanine and cytosine nucleobases, nucleosides, and nucleotides. J Phys Chem B 114:13214–13222. doi:10.1021/jp1034745

    Article  Google Scholar 

  156. Itälä E, Ha DT, Kooser K, Huels MA, Rachlew E, Nõmmiste E et al (2011) Molecular fragmentation of pyrimidine derivatives following site-selective carbon core ionization. J Electron Spectrosc Relat Phenom 184(3–6):119–124. doi:10.1016/j.elspec.2011.01.007

    Article  Google Scholar 

  157. Itälä E, Ha DT, Kooser K, Rachlew E, Huels MA, Kukk E (2010) Fragmentation patterns of core-ionized thymine and 5-bromouracil. J Chem Phys 133(15):154316. doi:10.1063/1.3505140

    Article  Google Scholar 

  158. Itälä E, Ha DT, Kooser K, Nõmmiste E, Joost U, Kukk E (2011) Fragmentation patterns of core ionized uracil. Int J Mass Spectrom 306(1):82–90. doi:10.1016/j.ijms.2011.07.006

    Article  Google Scholar 

  159. Itälä E, Huels MA, Rachlew E, Kooser K, Hägerth T, Kukk E (2013) A comparative study of dissociation of thymidine molecules following valence or core photoionization. J Phys B Atomic Mol Phys 46(21):215102. doi:10.1088/0953-4075/46/21/215102

    Article  Google Scholar 

  160. Ha DT, Huels MA, Huttula M, Urpelainen S, Kukk E (2011) Experimental and ab initio study of the photofragmentation of DNA and RNA sugars. Phys Rev A 84(3):033419. doi:10.1103/PhysRevA.84.033419

    Article  Google Scholar 

  161. Itälä E, Kooser K, Rachlew E, Huels MA, Kukk E (2014) Soft x-ray ionization induced fragmentation of glycine. J Chem Phys 140(23):234305. doi:10.1063/1.4882648

    Article  Google Scholar 

  162. Laksman J, Kooser K, Levola H, Ita E, Ha DT, Rachlew E, Kukk E (2014) Dissociation pathways in the cysteine dication after site-selective core ionization. J Phys Chem B 118(40):11688–11695

    Article  Google Scholar 

  163. Ha DT, Wang Y, Alcamí M, Itälä E, Kooser K, Urpelainen S et al (2014) Fragmentation dynamics of doubly charged methionine in the gas phase. J Phys Chem A 118(8):1374–1383. doi:10.1021/jp4113238

    Article  Google Scholar 

  164. Feyer V, Plekan O, Richter R, Coreno M, Prince KC, Carravetta V (2009) Photoemission and photoabsorption spectroscopy of glycyl-glycine in the gas phase. J Phys Chem A 113(40):10726–10733. doi:10.1021/jp906843j

    Article  Google Scholar 

  165. Feyer V, Plekan O, Richter R, Coreno M, Prince KC, Carravetta V (2008) Core level study of alanine and threonine. J Phys Chem A 112(34):7806–7815. doi:10.1021/jp803017y

    Article  Google Scholar 

  166. Zhang W, Carravetta V, Plekan O, Feyer V, Richter R, Coreno M, Prince KC (2009) Electronic structure of aromatic amino acids studied by soft x-ray spectroscopy. J Chem Phys 131(2009):035103. doi:10.1063/1.3168393

    Article  Google Scholar 

  167. Li H, Hua W, Lin Z, Luo Y (2012) First-principles study on core-level spectroscopy of arginine in gas and solid phases. J Phys Chem B 116:12641–12650. doi:10.1021/jp302309u

    Article  Google Scholar 

  168. Stolte W, Hansen D, Piancastelli M, Dominguez Lopez I, Rizvi A, Hemmers O (2001) Anionic photofragmentation of CO: a selective probe of core-level resonances. Phys Rev Lett 86(20):4504–4507. doi:10.1103/PhysRevLett.86.4504

    Article  Google Scholar 

  169. Lin Y-S, Lu K-T, Lee YT, Tseng C-M, Ni C-K, Liu C-L (2014) Near-edge X-ray absorption fine structure spectra and site-selective dissociation of phenol. J Phys Chem A 118(9):1601–1609. doi:10.1021/jp500284r

    Article  Google Scholar 

  170. Billas IM, Châtelain A, de Heer WA (1994) Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265(5179):1682–1684. doi:10.1126/science.265.5179.1682

    Article  Google Scholar 

  171. Krückeberg S, Beiersdorfer P, Dietrich G, Lützenkirchen K, Schweikhard L, Walther C (1997) First observation of multiply charged vanadium clusters in a Penning trap. Rapid Commun Mass Spectrom 11(5):455–458

    Article  Google Scholar 

  172. Terasaki A, Majima T, Kondow T (2007) Photon-trap spectroscopy of mass-selected ions in an ion trap: optical absorption and magneto-optical effects. J Chem Phys 127(23):231101. doi:10.1063/1.2822022

    Article  Google Scholar 

  173. Majima T, Terasaki A, Kondow T (2008) Optical pumping by a laser pulse traveling in a cavity. Phys Rev A 77(3):033417. doi:10.1103/PhysRevA.77.033417

    Article  Google Scholar 

  174. Terasaki A, Majima T, Kasai C, Kondow T (2009) Photon-trap spectroscopy of size-selected free cluster ions: “direct” measurement of optical absorption of Ag+ 9. Eur Phys J D 52(1–3):43–46. doi:10.1140/epjd/e2008-00274-0

    Article  Google Scholar 

  175. Egashira K, Bartels C, Kondow T, Terasaki A (2011) Optical absorption spectrum of the silver dimer ion: temperature dependence measured by photodissociation and photon-trap spectroscopy. Eur Phys J D 63(2):183–187. doi:10.1140/epjd/e2011-10525-6

    Article  Google Scholar 

  176. Hirsch K, Zamudio-Bayer V, Rittmann J, Langenberg A, Vogel M, Möller T et al (2012) Initial- and final-state effects on screening and branching ratio in 2p x-ray absorption of size-selected free 3d transition metal clusters. Phys Rev B 86(16):165402. doi:10.1103/PhysRevB.86.165402

    Article  Google Scholar 

  177. Lau JT, Vogel M, Langenberg A, Hirsch K, Rittmann J, Zamudio-Bayer V et al (2011) Communication: highest occupied molecular orbital-lowest unoccupied molecular orbital gaps of doped silicon clusters from core level spectroscopy. J Chem Phys 134(4):41102. doi:10.1063/1.3547699

    Article  Google Scholar 

  178. Vogel M, Kasigkeit C, Hirsch K, Langenberg A, Rittmann J, Zamudio-Bayer V et al (2012) 2p core-level binding energies of size-selected free silicon clusters: chemical shifts and cluster structure. Phys Rev B 85(19):195454. doi:10.1103/PhysRevB.85.195454

    Article  Google Scholar 

  179. Hirsch K, Zamudio-Bayer V, Ameseder F, Langenberg A, Rittmann J, Vogel M et al (2012) 2p x-ray absorption of free transition-metal cations across the 3d transition elements: calcium through copper. Phys Rev A 85(6):062501. doi:10.1103/PhysRevA.85.062501

    Article  Google Scholar 

  180. Niemeyer M, Hirsch K, Zamudio-Bayer V, Langenberg A, Vogel M, Kossick M et al (2012) Spin coupling and orbital angular momentum quenching in free iron clusters. Phys Rev Lett 108(5):057201. doi:10.1103/PhysRevLett.108.057201

    Article  Google Scholar 

  181. Zamudio-Bayer V, Leppert L, Hirsch K, Langenberg A, Rittmann J, Kossick M et al (2013) Coordination-driven magnetic-to-nonmagnetic transition in manganese-doped silicon clusters. Phys Rev B 88(11):115425. doi:10.1103/PhysRevB.88.115425

    Article  Google Scholar 

  182. Langenberg A, Hirsch K, Ławicki A, Zamudio-Bayer V, Niemeyer M, Chmiela P et al (2014) Spin and orbital magnetic moments of size-selected iron, cobalt, and nickel clusters. Phys Rev B 90(18):184420. doi:10.1103/PhysRevB.90.184420

    Article  Google Scholar 

  183. Daly S, Krstic M, Giuliani A, Antoine R, Nahon L, Zavras A, et al. (2015) Gas-phase VUV photoionization and photofragmentation of the silver deuteride nanocluster [Ag10D8L6]2+ (L=bis(diphenylphosphino)methane). A joint experimental and theoretical study. Phys Chem Chem Phys 17(39):25772–25777. doi:10.1039/c5cp01160d

    Google Scholar 

  184. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi:10.1021/cr030063a

    Article  Google Scholar 

  185. Schliehe C, Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151(3):278–285. doi:10.1016/j.jconrel.2011.01.005

    Article  Google Scholar 

  186. Flagan RC, Lunden MM (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater Sci Eng A 204(1–2):113–124

    Article  Google Scholar 

  187. Sublemontier O, Kintz H, Lacour F, Paquez X, Maurice V, Leconte Y et al (2011) Synthesis and on-line size control of silicon quantum dots. Kona Powder Part J 29:236–250

    Article  Google Scholar 

  188. Ravagnan L, Mazza T, Bongiorno G, Devetta M, Amati M, Milani P et al (2011) sp hybridization in free carbon nanoparticles–presence and stability observed by near edge X-ray absorption fine structure spectroscopy. Chem Commun (Camb) 47(10):2952–2954

    Article  Google Scholar 

  189. Ravagnan L, Bongiorno G, Bandiera D, Salis E, Piseri P, Milani P et al (2006) Quantitative evaluation of sp/sp(2) hybridization ratio in cluster-assembled carbon films by in situ near edge X-ray absorption fine structure spectroscopy. Carbon 44(8):1518–1524. doi:10.1016/j.carbon.2005.12.015

    Article  Google Scholar 

  190. Diaz J, Monteiro OR, Hussain Z (2007) Structure of amorphous carbon from near-edge and extended x-ray absorption spectroscopy. Phys Rev B 76(9):094201. doi:10.1103/PhysRevB.76.094201

    Article  Google Scholar 

  191. Kasrai M, Brown JR, Bancroft GM, Yin Z, Tan KH (1996) Sulphur characterization in coal from X-ray absorption near edge spectroscopy. Int J Coal Geol 32(1–4):107–135. doi:10.1016/S0166-5162(96)00033-X

    Article  Google Scholar 

  192. Sutherland DGJ, Kasrai M, Bancroft GM, Liu ZF, Tan KH (1993) Si L-edge and K-edge X-ray-absorption near-edge spectroscopy of gas-phase Si(CH3)(x)(OCH3)(4-X) – models for solid-state analogs. Phys Rev B 48(20):14989–15001. doi:10.1103/PhysRevB.48.14989

    Article  Google Scholar 

  193. Bresch H (2007) Doctoral thesis. Freie Universität Berlin

    Google Scholar 

  194. Garcia B, Salome M, Lemelle L, Bridot JL, Gillet P, Perriat P et al (2005) Sulfur K-edge XANES study of dihydrolipoic acid capped gold nanoparticles: dihydrolipoic acid is bound by both sulfur ends. Chem Commun 3:369–371. doi:10.1039/b411231h

    Article  Google Scholar 

  195. Roux S, Garcia B, Bridot JL, Salome M, Marquette C, Lemelle L et al (2005) Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir 21(6):2526–2536. doi:10.1021/la048082i

    Article  Google Scholar 

  196. Dezarnaud C, Tronc M, Hitchcock AP (1990) Inner shell spectroscopy of the carbon—sulfur bond. Chem Phys 142(3):455–462

    Article  Google Scholar 

  197. Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H (2008) Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem 18(41):4949–4958. doi:10.1039/b810488c

    Article  Google Scholar 

  198. Volkert AA, Subramaniam V, Ivanov MR, Goodman AM, Haes AJ (2011) Salt-mediated self-assembly of thioctic acid on gold nanoparticles. ACS Nano 5(6):4570–4580. doi:10.1021/nn200276a

    Article  Google Scholar 

  199. Kravis SD, Church DA, Johnson BM, Levin JC, Azuma Y, Sellin IA et al (1991) Sequential photoionization of ions using synchrotron radiation and a Penning ion trap. Nucl Instrum Methods Phys Res Sect B 56–57:396–399. doi:10.1016/0168-583X(91)96056-Q

    Article  Google Scholar 

  200. West JB (2001) Photoionization of atomic ions. J Phys B Atomic Mol Phys 34(18):R45–R91

    Article  Google Scholar 

  201. Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS (2014) Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature 505(7485):661–663. doi:10.1038/nature12936

    Article  Google Scholar 

  202. Zubavichus Y, Shaporenko A, Grunze M, Zharnikov M (2009) NEXAFS spectroscopy of biological molecules: from amino acids to functional proteins. Nucl Instrum Methods Phys Res Sect A 603(1–2):111–114. doi:10.1016/j.nima.2008.12.171

    Article  Google Scholar 

  203. Messer BM, Cappa CD, Smith JD, Wilson KR, Gilles MK, Cohen RC, Saykally RJ (2005) pH dependence of the electronic structure of glycine. J Phys Chem B 109(11):5375–5382. doi:10.1021/jp0457592

    Article  Google Scholar 

  204. Nolting D, Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B (2007) pH-induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy. J Am Chem Soc 129(45):14068–14073. doi:10.1021/ja072971l

    Article  Google Scholar 

  205. Ottosson N, Børve KJ, Spångberg D, Bergersen H, Sæthre LJ, Faubel M et al (2011) On the origins of core-electron chemical shifts of small biomolecules in aqueous solution: insights from photoemission and ab initio calculations of glycine(aq). J Am Chem Soc 133(9):3120–3130. doi:10.1021/ja110321q

    Article  Google Scholar 

  206. Fronzoni G, Baseggio O, Stener M, Hua W, Tian G, Luo Y et al (2014) Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene. J Chem Phys 141:044313. doi:10.1063/1.4891221

    Article  Google Scholar 

  207. Reitsma G, Boschman L, Deuzeman MJ, González-Magaña O, Hoekstra S, Cazaux S et al (2014) Deexcitation dynamics of superhydrogenated polycyclic aromatic hydrocarbon cations after soft-x-ray absorption. Phys Rev Lett 113(5):053002. doi:10.1103/PhysRevLett.113.053002

    Article  Google Scholar 

  208. Winter B (2009) Liquid microjet for photoelectron spectroscopy. Nucl Instrum Methods Phys Res Sect A 601(1–2):139–150. doi:10.1016/j.nima.2008.12.108

    Article  Google Scholar 

  209. Faubel M, Siefermann KR, Liu Y, Abel B (2012) Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc Chem Res 45(1):120–130

    Article  Google Scholar 

  210. Brown MA, Jordan I, Beloqui Redondo A, Kleibert A, Wörner HJ, Van Bokhoven JA (2013) In situ photoelectron spectroscopy at the liquid/nanoparticle interface. Surf Sci 610:1–6. doi:10.1016/j.susc.2013.01.012

    Article  Google Scholar 

  211. Brown MA, Redondo AB, Jordan I, Duyckaerts N, Lee MT, Ammann M et al (2013) A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions. Rev Sci Instrum 84(7):073904

    Article  Google Scholar 

  212. Winter B, Faubel M (2006) Photoemission from liquid aqueous solutions. Chem Rev 106(4):1176–1211

    Article  Google Scholar 

  213. Bergersen H, Marinho RRT, Pokapanich W, Lindblad A, Björneholm O, Sæthre LJ, Öhrwall G (2007) A photoelectron spectroscopic study of aqueous tetrabutylammonium iodide. J Phys Condens Matter 19(32):326101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar R. Milosavljević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milosavljević, A.R., Giuliani, A., Nicolas, C. (2016). Gas-Phase Near-Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy of Nanoparticles, Biopolymers, and Ionic Species. In: Kumar, C. (eds) X-ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48606-1_8

Download citation

Publish with us

Policies and ethics