Skip to main content

The Common Ancestral Genome of the Brassica Species

  • Chapter
  • First Online:
The Brassica rapa Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1861 Accesses

Abstract

All Brassica species are derived from a common hexaploid ancestor, and this hexaploid ancestor has been further deduced to origin from a diploid species through a whole genome triplication event. The diploid ancestor has 7 chromosomes and resembles the karyotype of tPCK (translocation Proto-Calepineae Karyotype). The confirming evidences for the Brassicas’ tPCK ancestor are from below three aspects: (1) The reconstructed genomic segments of the three subgenomes of all Brassica species keep the genomic structure of tPCK; (2) The locations of extant centromeres and the traces of paleocentromeres on the genomes of Brassicas support its ancestral diploid genome as tPCK; (3) The phylogeny tree and evolution analysis based on the whole genome sequences of several sequenced Brassicaceae species find that the Brassicas are evolved from a tPCK genome, such as the tPCK species S. parvula. The determination of the shared diploid ancestor for all Brassica species lays an important foundation for the genetic studies of Brassica crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burrell AM, Taylor KG, Williams RJ, Cantrell RT, Menz MA, Pepper AE (2011) A comparative genomic map for Caulanthus amplexicaulis and related species (Brassicaceae). Mol Ecol 20:784–798

    Article  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S et al (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012a) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B et al (2012b) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 7:e36442

    Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    Google Scholar 

  • Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2010) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    Article  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A et al (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun (in press)

    Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilication. Jpn J Bot 7:389–452

    Google Scholar 

  • Nelson MN, Parkin IA, Lydiate DJ (2011) The mosaic of ancestral karyotype blocks in the Sinapis alba L. genome. Genome 54:33–41

    Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113

    Article  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Oper Bot 55:1–57

    Google Scholar 

  • Röbbelen G (1960) Beitra ge zur Analyse des Brassica-Genoms. Chromosoma 11:205–228

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Padmaja KL, Gupta V, Paritosh K, Pradhan AK et al (2014) Two plastid DNA lineages–Rapa/Oleracea and Nigra–within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea. PLoS One 9:e93260

    Google Scholar 

  • Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S et al (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truco MJ, Hu J, Sadowski J, Quiros CF (1996) Inter- and infra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet 93:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011a) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M et al (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109:12219–12224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, F., Lysak, M.A., Mandáková, T., Wang, X. (2015). The Common Ancestral Genome of the Brassica Species. In: Wang, X., Kole, C. (eds) The Brassica rapa Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47901-8_8

Download citation

Publish with us

Policies and ethics