Skip to main content

Approximately Counting Locally-Optimal Structures

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

A locally-optimal structure is a combinatorial structure that cannot be improved by certain (greedy) local moves, even though it may not be globally optimal. An example is a maximal independent set in a graph. It is trivial to construct an independent set in a graph. It is easy to (greedily) construct a maximal independent set. However, it is NP-hard to construct a globally-optimal (maximum) independent set.This situation is typical. Constructing a locally-optimal structure is somewhat more difficult than constructing an arbitrary structure, and constructing a globally-optimal structure is more difficult than constructing a locally-optimal structure. The same situation arises with listing. The differences between the problems become obscured when we move from listing to counting because nearly everything is \(\#\text {P} \)-complete. However, we highlight an interesting phenomenon that arises in approximate counting, where approximately counting locally-optimal structures is apparently more difficult than approximately counting globally-optimal structures. Specifically, we show that counting maximal independent sets is complete for \(\#\text {P} \) with respect to approximation-preserving reductions, whereas counting all independent sets, or counting maximum independent sets is complete for an apparently smaller class, #RH\(\varPi _1\) which has a prominent role in the complexity of approximate counting. Motivated by the difficulty of approximately counting maximal independent sets in bipartite graphs, we also study counting problems involving minimal separators and minimal edge separators (which are also locally-optimal structures). Minimal separators have applications via fixed-parameter-tractable algorithms for constructing triangulations and phylogenetic trees. Although exact (exponential-time) algorithms exist for listing these structures, we show that the counting problems are as hard as they could possibly be. All of the exact counting problems are \(\#\text {P} \)-complete, and all of the approximation problems are complete for \(\#\text {P} \) with respect to approximation-preserving reductions. A full version [14] containing detailed proofs is available at http://arxiv.org/abs/1411.6829. Theorem-numbering here matches the full version.

L.A. Goldberg and J. Lapinskas—The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) ERC grant agreement no. 334828. The paper reflects only the authors’ views and not the views of the ERC or the European Commission. The European Union is not liable for any use that may be made of the information contained therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. International Journal of Foundations of Computer Science 11(3), 397–403 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Fomin, F.V.: Tree decompositions with small cost. Discrete Applied Mathematics 145(2), 143–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Fomin, F.V., Koster, A.M., Kratsch, D., Thilikos, D.M.: On exact algorithms for treewidth. ACM Trans. Algorithms 9(1), 12:1–12:23 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal 51(3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM Journal on Computing 31(1), 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theoretical Computer Science 276(1–2), 17–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diestel, R.: Graph Theory, 4th Edition. Graduate texts in mathematics, vol. 173. Springer (2012)

    Google Scholar 

  8. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38(3), 471–500 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM Journal on Computing 38(3), 1058–1079 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: 27th STACS, pp. 383–394 (2010)

    Google Scholar 

  11. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Furuse, M., Yamazaki, K.: A revisit of the scheme for computing treewidth and minimum fill-in. Theoretical Computer Science 531(0), 66–76 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldberg, L.A.: Efficient Algorithms for Listing Combinatorial Structures. Cambridge University Press (1993). Cambridge Books Online

    Google Scholar 

  14. Goldberg, L.A., Gysel, R., Lapinskas, J.: Approximately counting locally-optimal structures. CoRR abs/1411.6829 (2014)

    Google Scholar 

  15. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic Ising with local fields. Combin. Probab. Comput. 16(1), 43–61 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferromagnetic Potts model. J. ACM 59(5), 31 (2012). Art. 25

    Article  MathSciNet  Google Scholar 

  17. Gysel, R.: Unique perfect phylogeny characterizations via uniquely representable chordal graphs. CoRR abs/1305.1375 (2013)

    Google Scholar 

  18. Gysel, R.: Minimal triangulation algorithms for perfect phylogeny problems. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 421–432. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kashiwabara, T., Masuda, S., Nakajima, K., Fujisawa, T.: Generation of maximum independent sets of a bipartite graph and maximum cliques of a circular-arc graph. J. Algorithms 13(1), 161–174 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM Journal on Computing 27, 605–613 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lokshtanov, D.: On the complexity of computing treelength. Discrete Applied Mathematics 158(7), 820–827 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shen, H., Liang, W.: Efficient enumeration of all minimal separators in a graph. Theoretical Computer Science 180(1–2), 169–180 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Takata, K.: Space-optimal, backtracking algorithms to list the minimal vertex separators of a graph. Discrete Appl. Math. 158(15), 1660–1667 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Whitney, H.: Planar graphs. Fundamenta Mathematicae 21(1), 73–84 (1933)

    Google Scholar 

  29. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J. Comput. 25(6), 1293–1304 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lapinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, L.A., Gysel, R., Lapinskas, J. (2015). Approximately Counting Locally-Optimal Structures. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics