Skip to main content

Choosing a Variable Ordering for Truth-Table Invariant Cylindrical Algebraic Decomposition by Incremental Triangular Decomposition

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

Abstract

Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon, D., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: The basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. To appear: Proc. CASC 2014 (2014), Preprint: http://opus.bath.ac.uk/38344/

  3. Bradford, R., Davenport, J.H.: Towards better simplification of elementary functions. In: Proc. ISSAC 2002, pp. 16–22. ACM (2002)

    Google Scholar 

  4. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for boolean combinations. In: Proc. ISSAC 2013, pp. 125–132. ACM (2013)

    Google Scholar 

  5. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition (submitted for publication, 2014), Preprint: http://opus.bath.ac.uk/38146/

  6. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 19–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Brown, C.W.: Companion to the tutorial: Cylindrical algebraic decomposition. Presented at ISSAC 2004 (2004), http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

  8. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proc. ISSAC 2007, pp. 54–60. ACM (2007)

    Google Scholar 

  9. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modelling. J. Symbolic Computation 41, 1157–1173 (2006)

    Article  MATH  Google Scholar 

  10. Chen, C., Davenport, J.H., Lemaire, F., Moreno Maza, M., Xia, B., Xiao, R., Xie, Y.: Computing the real solutions of polynomial systems with the RegularChains library in Maple. ACM C.C.A. 45(3/4), 166–168 (2011)

    Google Scholar 

  11. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical algebraic decompositions. In: Proc. ASCM 2012. Preprint: http://arxiv.org/abs/1210.5543

  12. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proc. ISSAC 2009, pp. 95–102. ACM (2009)

    Google Scholar 

  13. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition – 20 years of progress. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monographs in Symb. Com., pp. 8–23. Springer (1998)

    Google Scholar 

  14. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: Proc. 14th SYNASC 2012, pp. 83–88. IEEE (2012)

    Google Scholar 

  15. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc. ISSAC 2004, pp. 111–118. ACM (2004)

    Google Scholar 

  16. England, M., Bradford, R., Chen, C., Davenport, J.H., Moreno Maza, M., Wilson, D.: Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Watt, S.M. (ed.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 45–60. Springer, Heidelberg (2014), Preprint: http://opus.bath.ac.uk/39231/

    Google Scholar 

  17. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Understanding branch cuts of expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 136–151. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using cylindrical algebraic decomposition. In: Proc. CDC-ECC 2005, pp. 3735–3740 (2005)

    Google Scholar 

  19. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.: Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M. (ed.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 92–107. Springer, Heidelberg (2014), Preprint: http://opus.bath.ac.uk/39232/

    Google Scholar 

  20. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monographs in Symb. Comp., pp. 242–268. Springer (1998)

    Google Scholar 

  21. McCallum, S.: On projection in CAD-based quantifier elimination with equational constraint. In: Proc. ISSAC 1999, pp. 145–149. ACM (1999)

    Google Scholar 

  22. Paulson, L.C.: Metitarski: Past and future. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Wilson, D., Davenport, J.H., England, M., Bradford, R.: A “piano movers” problem reformulated. In: Proc. SYNASC 2013, pp. 53–60. IEEE (2014)

    Google Scholar 

  24. The RegularChains Library, http://www.regularchains.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

England, M., Bradford, R., Davenport, J.H., Wilson, D. (2014). Choosing a Variable Ordering for Truth-Table Invariant Cylindrical Algebraic Decomposition by Incremental Triangular Decomposition. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics