Skip to main content

Computational Modeling Reinforces that Proprioceptive Cues May Augment Compliance Discrimination When Elasticity Is Decoupled from Radius of Curvature

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8619))

Abstract

Our capability to discriminate object compliance is based on cues both tactile and proprioceptive, in addition to visual. To understand how the mechanics of the fingertip skin and bone might encode such information, we used finite element models to simulate the task of differentiating spherical indenters of radii (4, 6 and 8 mm) and elasticity (initial shear modulus of 10, 50 and 90 kPa). In particular, we considered two response variables, the strain energy density (SED) at the epidermal-dermal interface where Merkel cell end-organs of slowly adapting type I afferents reside, and the displacement of the fingertip bone necessary to achieve certain surface contact force. The former variable ties to tactile cues while the latter ties to proprioceptive cues. The results indicate that distributions of SED are clearly distinct for most combinations of object radii and elasticity. However, for certain combinations – e.g., between 4 mm spheres of 10 kPa and 8 mm of 90 kPa – spatial distributions of SED are nearly identical. In such cases where tactile-only cues are non-differentiable, we may rely on proprioceptive cues to discriminate compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srinivasan, M.A., LaMotte, R.H.: Tactual discrimination of softness. J. Neurophysiol. 73, 88–101 (1995)

    Google Scholar 

  2. Bergmann Tiest, W.M., Kappers, A.: Cues for haptic perception of compliance. IEEE Trans. Haptics 2, 189–199 (2009). doi:10.1109/TOH.2009.16

    Article  Google Scholar 

  3. Friedman, R.M., Hester, K.D., Green, B.G., LaMotte, R.H.: Magnitude estimation of softness. Exp. Brain Res. 191, 133–142 (2008). doi:10.1007/s00221-008-1507-5

    Article  Google Scholar 

  4. LaMotte, R.H.: Softness discrimination with a tool. J. Neurophysiol. 83, 1777–1786 (2000)

    Google Scholar 

  5. Condon, M., Birznieks, I., Hudson, K., et al.: Differential sensitivity to surface compliance by tactile afferents in the human fingerpad. J. Neurophysiol. (2013). doi:10.1152/jn.00589.2013

    MATH  Google Scholar 

  6. Gwilliam, J.C., Yoshioka, T., Okamura, A.M., Hsiao, S.S.: Neural coding of lump detection in compliant artificial tissue. J. Neurophysiol. (2014). doi:10.1152/jn.00032.2013

  7. Gerling, G.J., Rivest II, Lesniak, D.R., et al.: Validating a population model of tactile mechanotransduction of slowly adapting type I afferents at levels of skin mechanics, single-unit response and psychophysics. IEEE Trans. Haptics 1–1 (2013). doi:10.1109/TOH.2013.36

  8. Dandekar, K.: Role of mechanics in tactile sensing of shape (1995)

    Google Scholar 

  9. Gulati, R.J., Srinivasan, M.A.: Human fingerpad under indentation I: static and dynamic force response. ASME-Publications-Bed 29, 261 (1995)

    Google Scholar 

  10. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    Google Scholar 

  11. Gitis, N., Sivamani, R.: Tribometrology of skin. Tribol. Trans. 47, 461–469 (2004). doi:10.1080/05698190490493355

    Article  Google Scholar 

  12. Proske, U., Gandevia, S.C.: The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012). doi:10.1152/physrev.00048.2011

    Article  Google Scholar 

  13. Johnson, K.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001). doi:10.1016/S0959-4388(00)00234-8

    Article  Google Scholar 

  14. Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16, 496–504 (2000). doi:10.1109/70.880800

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (NIH NINDS R01NS073119). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Gerling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Gerling, G.J. (2014). Computational Modeling Reinforces that Proprioceptive Cues May Augment Compliance Discrimination When Elasticity Is Decoupled from Radius of Curvature. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44196-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44196-1_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44195-4

  • Online ISBN: 978-3-662-44196-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics