Skip to main content

Abstract

In the real world, we are confronted not only with complex and high-dimensional data sets, but usually with noisy, incomplete and uncertain data, where the application of traditional methods of knowledge discovery and data mining always entail the danger of modeling artifacts. Originally, information entropy was introduced by Shannon (1949), as a measure of uncertainty in the data. But up to the present, there have emerged many different types of entropy methods with a large number of different purposes and possible application areas. In this paper, we briefly discuss the applicability of entropy methods for the use in knowledge discovery and data mining, with particular emphasis on biomedical data. We present a very short overview of the state-of-the-art, with focus on four methods: Approximate Entropy (ApEn), Sample Entropy (SampEn), Fuzzy Entropy (FuzzyEn), and Topological Entropy (FiniteTopEn). Finally, we discuss some open problems and future research challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of biomedical data - challenges in human computer interaction and biomedical informatics. In: DATA 2012, vol. 1, pp. 9–20. INSTICC (2012)

    Google Scholar 

  2. Downarowicz, T.: Entropy in dynamical systems, vol. 18. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  3. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  4. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pincus, S.: Approximate entropy (apen) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  7. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Holzinger, A., Simonic, K.-M. (eds.): Information Quality in e-Health. LNCS, vol. 7058. Springer, Heidelberg (2011)

    Google Scholar 

  9. Kim, W., Choi, B.J., Hong, E.K., Kim, S.K., Lee, D.: A taxonomy of dirty data. Data Mining and Knowledge Discovery 7(1), 81–99 (2003)

    Article  MathSciNet  Google Scholar 

  10. Gschwandtner, T., Gärtner, J., Aigner, W., Miksch, S.: A taxonomy of dirty time-oriented data. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) CD-ARES 2012. LNCS, vol. 7465, pp. 58–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Clausius, R.: On the motive power of heat, and on the laws which can be deduced from it for the theory of heat, poggendorff’s annalen der physick, lxxix (1850)

    Google Scholar 

  12. Sethna, J.P.: Statistical mechanics: Entropy, order parameters, and complexity, vol. 14. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  13. Jaynes, E.T.: Information theory and statistical mechanics. Physical Review 106(4), 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golan, A.: Information and entropy econometrics: A review and synthesis. Now Publishers Inc. (2008)

    Google Scholar 

  15. Holzinger, A.: Biomedical Informatics: Discovering Knowledge in Big Data. Springer, New York (2014)

    Book  MATH  Google Scholar 

  16. Jaynes, E.T.: Information theory and statistical mechanics. Physical Review 106(4), 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mowshowitz, A.: Entropy and the complexity of graphs: I. an index of the relative complexity of a graph. The Bulletin of Mathematical Biophysics 30(1), 175–204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Körner, J.: Coding of an information source having ambiguous alphabet and the entropy of graphs. In: 6th Prague Conference on Information Theory, pp. 411–425 (1973)

    Google Scholar 

  19. Holzinger, A., Ofner, B., Stocker, C., Calero Valdez, A., Schaar, A.K., Ziefle, M., Dehmer, M.: On graph entropy measures for knowledge discovery from publication network data. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 354–362. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Information Sciences 181(1), 57–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Posner, E.C.: Random coding strategies for minimum entropy. IEEE Transactions on Information Theory 21(4), 388–391 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yuan, L., Kesavan, H.: Minimum entropy and information measure. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 28(3), 488–491 (1998)

    Article  Google Scholar 

  23. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. European Journal of Operational Research 99(1), 89–112 (1997)

    Article  Google Scholar 

  24. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Annals of Operations Research 134(1), 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. Journal of Statistical Physics 52(1-2), 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. de Albuquerque, M.P., Esquef, I.A., Mello, A.R.G., de Albuquerque, M.P.: Image thresholding using tsallis entropy. Pattern Recognition Letters 25(9), 1059–1065 (2004)

    Article  Google Scholar 

  27. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Google Scholar 

  28. Chen, W., Wang, Z., Xie, H., Yu, W.: Characterization of surface emg signal based on fuzzy entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(2), 266–272 (2007)

    Article  Google Scholar 

  29. Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., Liu, S.: Analysis of heart rate variability using fuzzy measure entropy. Comput. Biol. Med. 43(2), 100–108 (2013)

    Article  Google Scholar 

  30. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Transactions of the American Mathematical Society 114(2), 309–319 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Adler, R., Downarowicz, T., Misiurewicz, M.: Topological entropy. Scholarpedia 3(2), 2200 (2008)

    Article  Google Scholar 

  32. Koslicki, D.: Topological entropy of dna sequences. Bioinformatics 27(8), 1061–1067 (2011)

    Article  Google Scholar 

  33. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Solomonoff, R.J.: A formal theory of inductive inference. Part II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1(1), 1–7 (1965)

    MathSciNet  MATH  Google Scholar 

  36. Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  37. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.-H., Suri, J.S.: Automated diagnosis of epileptic eeg using entropies. Biomedical Signal Processing and Control 7(4), 401–408 (2012)

    Article  Google Scholar 

  38. Hornero, R., Aboy, M., Abasolo, D., McNames, J., Wakeland, W., Goldstein, B.: Complex analysis of intracranial hypertension using approximate entropy. Crit. Care. Med. 34(1), 87–95 (2006)

    Article  Google Scholar 

  39. Batchinsky, A.I., Salinas, J., Cancio, L.C., Holcomb, J.: Assessment of the need to perform life-saving interventions using comprehensive analysis of the electrocardiogram and artificial neural networks. Use of Advanced Techologies and New Procedures in Medical Field Operations 39, 1–16 (2010)

    Google Scholar 

  40. Sarlabous, L., Torres, A., Fiz, J.A., Gea, J., Martínez-Llorens, J.M., Morera, J., Jané, R.: Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5967–5970 (2010)

    Google Scholar 

  41. Yentes, J., Hunt, N., Schmid, K., Kaipust, J., McGrath, D., Stergiou, N.: The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering 41(2), 349–365 (2013)

    Article  Google Scholar 

  42. Roerdink, M., De Haart, M., Daffertshofer, A., Donker, S.F., Geurts, A.C., Beek, P.J.: Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp. Brain Res. 174(2), 256–269 (2006)

    Article  Google Scholar 

  43. Clift, B., Haussler, D., McConnell, R., Schneider, T.D., Stormo, G.D.: Sequence landscapes. Nucleic Acids Research 14(1), 141–158 (1986)

    Article  Google Scholar 

  44. Schneider, T.D., Stephens, R.M.: Sequence logos: A new way to display consensus sequences. Nucleic Acids Research 18(20), 6097–6100 (1990)

    Article  Google Scholar 

  45. Pinho, A.J., Garcia, S.P., Pratas, D., Ferreira, P.J.S.G.: DNA sequences at a glance. PLoS ONE 8(11), e79922 (2013)

    Google Scholar 

  46. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Research 18(8), 2163–2170 (1990)

    Article  Google Scholar 

  47. Goldman, N.: Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences. Nucleic Acids Research 21(10), 2487–2491 (1993)

    Article  Google Scholar 

  48. Oliver, J.L., Bernaola-Galván, P., Guerrero-García, J., Román-Roldán, R.: Entropic profiles of DNA sequences through chaos-game-derived images. Journal of Theoretical Biology 160, 457–470 (1993)

    Article  Google Scholar 

  49. Vinga, S., Almeida, J.S.: Local Renyi entropic profiles of DNA sequences. BMC Bioinformatics 8(393) (2007)

    Google Scholar 

  50. Crochemore, M., Vérin, R.: Zones of low entropy in genomic sequences. Computers & Chemistry, 275–282 (1999)

    Google Scholar 

  51. Allison, L., Stern, L., Edgoose, T., Dix, T.I.: Sequence complexity for biological sequence analysis. Computers & Chemistry 24, 43–55 (2000)

    Article  Google Scholar 

  52. Stern, L., Allison, L., Coppel, R.L., Dix, T.I.: Discovering patterns in Plasmodium falciparum genomic DNA. Molecular & Biochemical Parasitology 118, 174–186 (2001)

    Article  Google Scholar 

  53. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. In: Proc. of the Data Compression Conf., DCC 2007, Snowbird, Utah, pp. 43–52 (March 2007)

    Google Scholar 

  54. Dix, T.I., Powell, D.R., Allison, L., Bernal, J., Jaeger, S., Stern, L.: Comparative analysis of long DNA sequences by per element information content using different contexts. BMC Bioinformatics 8(Suppl 8(suppl. 2), 10 (2007)

    Article  Google Scholar 

  55. Grumbach, S., Tahi, F.: Compression of DNA sequences. In: Proc. of the Data Compression Conf., DCC 93, Snowbird, Utah, pp. 340–350 (1993)

    Google Scholar 

  56. Rivals, E., Delgrange, O., Delahaye, J.-P., Dauchet, M., Delorme, M.-O., Hénaut, A., Ollivier, E.: Detection of significant patterns by compression algorithms: The case of approximate tandem repeats in DNA sequences. Computer Applications in the Biosciences 13, 131–136 (1997)

    Google Scholar 

  57. Gusev, V.D., Nemytikova, L.A., Chuzhanova, N.A.: On the complexity measures of genetic sequences. Bioinformatics 15(12), 994–999 (1999)

    Article  Google Scholar 

  58. Nan, F., Adjeroh, D.: On the complexity measures for biological sequences. In: Proc. of the IEEE Computational Systems Bioinformatics Conference, CSB-2004, Stanford, CA (August 2004 )

    Google Scholar 

  59. Pirhaji, L., Kargar, M., Sheari, A., Poormohammadi, H., Sadeghi, M., Pezeshk, H., Eslahchi, C.: The performances of the chi-square test and complexity measures for signal recognition in biological sequences. Journal of Theoretical Biology 251(2), 380–387 (2008)

    Article  MathSciNet  Google Scholar 

  60. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  61. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer (2008)

    Google Scholar 

  62. Chen, X., Kwong, S., Li, M.: A compression algorithm for DNA sequences and its applications in genome comparison. In: Asai, K., Miyano, S., Takagi, T. (eds.) Proc. of the 10th Workshop, Genome Informatics 1999, Tokyo, Japan, pp. 51–61 (1999)

    Google Scholar 

  63. Pinho, A.J., Ferreira, P.J.S.G., Neves, A.J.R., Bastos, C.A.C.: On the representability of complete genomes by multiple competing finite-context (Markov) models. PLoS ONE 6(6), e21588 (2011)

    Google Scholar 

  64. Pinho, A.J., Garcia, S.P., Ferreira, P.J.S.G., Afreixo, V., Bastos, C.A.C., Neves, A.J.R., Rodrigues, J.M.O.S.: Exploring homology using the concept of three-state entropy vector. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS (LNBI), vol. 6282, pp. 161–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  65. Garcia, S.P., Rodrigues, J.M.O.S., Santos, S., Pratas, D., Afreixo, V., Bastos, C.A.C., Ferreira, P.J.S.G., Pinho, A.J.: A genomic distance for assembly comparison based on compressed maximal exact matches. IEEE/ACM Trans. on Computational Biology and Bioinformatics 10(3), 793–798 (2013)

    Article  Google Scholar 

  66. Holzinger, A., Stocker, C., Peischl, B., Simonic, K.M.: On using entropy for enhancing handwriting preprocessing. Entropy 14(11), 2324–2350 (2012)

    Article  MATH  Google Scholar 

  67. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(suppl. 6), 11 (2014)

    Google Scholar 

  68. Zhou, Z., Feng, L.: Twelve open problems on the exact value of the hausdorff measure and on topological entropy: A brief survey of recent results. Nonlinearity 17(2), 493–502 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  69. Chon, K., Scully, C.G., Lu, S.: Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag. 28(6), 18–23 (2009)

    Article  Google Scholar 

  70. Liu, C., Liu, C., Shao, P., Li, L., Sun, X., Wang, X., Liu, F.: Comparison of different threshold values r for approximate entropy: Application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32(2), 167–180 (2011)

    Article  Google Scholar 

  71. Mayer, C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., Wassertheurer, S.: Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics 15

    Google Scholar 

  72. Boskovic, A., Loncar-Turukalo, T., Japundzic-Zigon, N., Bajic, D.: The flip-flop effect in entropy estimation, pp. 227–230 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holzinger, A. et al. (2014). On Entropy-Based Data Mining. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43968-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43967-8

  • Online ISBN: 978-3-662-43968-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics