Skip to main content

Fundamental Collective Behaviors in Swarm Robotics

  • Chapter
Springer Handbook of Computational Intelligence

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we present and discuss a number of types of fundamental collective behaviors studied within the swarm robotics domain. Swarm robotics is a particular approach to the design and study of multi-robot systems, which emphasizes decentralized and self-organizing behavior that deals with limited individual abilities, local sensing, and local communication. The desired features for a swarm robotics system are flexibility to variable environmental conditions, robustness to failure, and scalability to large groups. These can be achieved thanks to well-designed collective behavior – often obtained via some sort of bio-inspired approach – that relies on cooperation among redundant components. In this chapter, we discuss the solutions proposed for a limited number of problems common to many swarm robotics systems – namely aggregation, synchronization, coordinated motion, collective exploration, and decision making. We believe that many real-word applications subsume one or more of these problems, and tailored solutions can be developed starting from the studies we review in this chapter. Finally, we propose possible directions for future research and discuss the relevant challenges to be addressed in order to push forward the study and the applications of swarm robotics systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

VHS:

virtual heading system

References

  1. J.T. Bonner: Chemical signals of social amoebae, Sci. Am. 248, 114–120 (1983)

    Article  Google Scholar 

  2. C. van Oss, A.V. Panfilov, P. Hogeweg, F. Siegert, C.J. Weijer: Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum, J. Theor. Biol. 181(3), 203–213 (1996)

    Article  Google Scholar 

  3. S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau: Self-Organization in Biological Systems (Princeton Univ. Press, Princeton 2001)

    MATH  Google Scholar 

  4. J.-L. Deneubourg, J.C. Grégoire, E. Le Fort: Kinetics of larval gregarious behavior in the bark beetle Dendroctonus micans (coleoptera, scolytidae), J. Insect Behav. 3(2), 169–182 (1990)

    Article  Google Scholar 

  5. R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, G. Theraulaz: Self-organized aggregation in cockroaches, Anim. Behav. 69(1), 169–180 (2005)

    Article  Google Scholar 

  6. S. Garnier, C. Jost, J. Gautrais, M. Asadpour, G. Caprari, R. Jeanson, A. Grimal, G. Theraulaz: The embodiment of cockroach aggregation behavior in a group of micro-robots, Artif. Life 14(4), 387–408 (2008)

    Article  Google Scholar 

  7. G. Caprari, R. Siegwart: Mobile micro-robots ready to use: Alice, Proc. 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2005), Piscataway (2005) pp. 3295–3300

    Chapter  Google Scholar 

  8. M. Dorigo, V. Trianni, E. Şahin, R. Groß, T.H. Labella, G. Baldassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, L.M. Gambardella: Evolving self-organizing behaviors for a swarm-bot, Auton. Robot. 17(2/3), 223–245 (2004)

    Article  Google Scholar 

  9. S. Kernbach, R. Thenius, O. Kernbach, T. Schmickl: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system, Adapt. Behav. 17(3), 237–259 (2009)

    Article  Google Scholar 

  10. O. Soysal, E. Şahin: A macroscopic model for self-organized aggregation in swarm robotic systems, Lect. Notes Comput. Sci. 4433, 27–42 (2007)

    Article  Google Scholar 

  11. E. Bahçeci, E. Şahin: Evolving aggregation behaviors for swarm robotic systems: A systematic case study, Proc. IEEE Swarm Intell. Symp. (SIS 2005), Piscataway (2005) pp. 333–340

    Google Scholar 

  12. H. Ando, Y. Oasa, I. Suzuki, M. Yamashita: Distributed memoryless point convergence algorithm for mobile robots with limited visibility, IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)

    Article  Google Scholar 

  13. V. Gazi: Swarm aggregations using artificial potentials and sliding-mode control, IEEE Trans. Robot. 21(6), 1208–1214 (2005)

    Article  Google Scholar 

  14. W.M. Spears, D.F. Spears, J.C. Hamann, R. Heil: Distributed, physics-based control of swarms of vehicles, Auton. Robot. 17(2), 137–162 (2004)

    Article  Google Scholar 

  15. C. Melhuish, O. Holland, S. Hoddell: Convoying: Using chorusing to form travelling groups of minimal agents, Robot. Auton. Syst. 28, 207–216 (1999)

    Article  Google Scholar 

  16. A. Pikovsky, M. Rosenblum, J. Kurths: Phase synchronization in regular and chaotic systems, Int. J. Bifurc. Chaos 10(10), 2291–2305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. S.H. Strogatz: Sync: The Emerging Science of Spontaneous Order (Hyperion, New York 2003)

    Google Scholar 

  18. A.T. Winfree: Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1), 15–42 (1967)

    Article  Google Scholar 

  19. Y. Kuramoto: Phase dynamics of weakly unstable periodic structures, Prog. Theor. Phys. 71(6), 1182–1196 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Buck: Synchronous rhythmic flashing of fireflies. II, Q. Rev. Biol. 63(3), 256–289 (1988)

    Article  MathSciNet  Google Scholar 

  21. R.E. Mirollo, S.H. Strogatz: Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Wischmann, M. Huelse, J.F. Knabe, F. Pasemann: Synchronization of internal neural rhythms in multi-robotic systems, Adapt. Behav. 14(2), 117–127 (2006)

    Article  Google Scholar 

  23. V. Trianni, S. Nolfi: Self-organising sync in a robotic swarm. A dynamical system view, IEEE Trans. Evol. Comput. 13(4), 722–741 (2009)

    Article  Google Scholar 

  24. M. Hartbauer, H. Roemer: A novel distributed swarm control strategy based on coupled signal oscillators, Bioinspiration Biomim. 2(3), 42–56 (2007)

    Article  Google Scholar 

  25. A.L. Christensen, R. O'Grady, M. Dorigo: From fireflies to fault-tolerant swarms of robots, IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)

    Article  Google Scholar 

  26. S. Wischmann, F. Pasemann: The emergence of communication by evolving dynamical systems, Lect. Notes Artif. Intell. 4095, 777–788 (2006)

    Google Scholar 

  27. V. Sperati, V. Trianni, S. Nolfi: Evolving coordinated group behaviours through maximization of mean mutual information, Swarm Intell. 2(2–4), 73–95 (2008)

    Article  Google Scholar 

  28. A. Huth, C. Wissel: The simulation of the movement of fish schools, J. Theor. Biol. 156(3), 365–385 (1992)

    Article  Google Scholar 

  29. I. Aoki: A simulation study on the schooling mechanism in fish, Bull. Jpn. Soc. Sci. Fish. 48(8), 1081–1088 (1982)

    Article  Google Scholar 

  30. A. Okubo: Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds, Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  31. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks: Collective memory and spatial sorting in animal groups, J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  32. M. Ballerini, N. Calbibbo, R. Candeleir, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  33. I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin: Effective leadership and decision-making in animal groups on the move, Nature 433(7025), 513–516 (2005)

    Article  Google Scholar 

  34. C.W. Reynolds: Flocks, herds, and schools: A distributed behavioral model, Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  35. A.E. Turgut, H. Çelikkanat, F. Gökçe, E. Şahin: Self-organized flocking in mobile robot swarms, Swarm Intell. 2(2–4), 97–120 (2008)

    Article  Google Scholar 

  36. H. Çelikkanat, E. Şahin: Steering self-organized robot flocks through externally guided individuals, Neural Comput. Appl. 19(6), 849–865 (2010)

    Article  Google Scholar 

  37. A. Campo, S. Nouyan, M. Birattari, R. Groß, M. Dorigo: Negotiation of goal direction for cooperative transport, Lect. Notes Comput. Sci. 4150, 191–202 (2006)

    Article  Google Scholar 

  38. G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, S. Nolfi: Self-organised coordinated motion in groups of physically connected robots, IEEE Trans. Syst. Man Cybern. B 37(1), 224–239 (2007)

    Article  Google Scholar 

  39. V. Trianni, M. Dorigo: Self-organisation and communication in groups of simulated and physical robots, Biol. Cybern. 95, 213–231 (2006)

    Article  MATH  Google Scholar 

  40. D.H. Wolpert, W.G. Macready: No free lunch theorems for search. Technical Report SFI-TR-95-02-010 (Santa Fe Institute 1995)

    Google Scholar 

  41. T.J. Pitcher, A.E. Magurran, I.J. Winfield: Fish in larger shoals find food faster, Behav. Ecol. Sociobiol. 10(2), 149–151 (1982)

    Article  Google Scholar 

  42. T.J. Pitcher, J.K. Parrish: Functions of shoaling behaviour in teleosts, Behav. Teleost Fishes 2, 369–439 (1993)

    Google Scholar 

  43. D.J. Hoare, I.D. Couzin, J.-G.J. Godin, J. Krause: Context-dependent group size choice in fish, Anim. Behav. 67(1), 155–164 (2004)

    Article  Google Scholar 

  44. E.A. Codling, M.J. Plank, S. Benhamou: Random walk models in biology, J. R. Soc. Interface 5(25), 813–834 (2008)

    Article  Google Scholar 

  45. P. Turchin: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants (Sinauer Associates Sunderland, Massachusetts 1998)

    Google Scholar 

  46. A. Ōkubo, S.A. Levin: Diffusion and Ecological Problems: Modern Perspectives, Vol. 14 (Springer, Berlin, Heidelberg 2001)

    MATH  Google Scholar 

  47. S. Benhamou: Spatial memory and searching efficiency, Animal Behav. 47(6), 1423–1433 (1994)

    Article  Google Scholar 

  48. J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chrétien: The dynamics of collective sorting robot-like ants and ant-like robots, Proc. 1st Int. Conf. Simul. Adapt. Behav. Anim. Animat. (1991) pp. 356–363

    Google Scholar 

  49. T. Schmickl, K. Crailsheim: Trophallaxis within a robotic swarm: Bio-inspired communication among robots in a swarm, Auton. Robot. 25(1), 171–188 (2008)

    Article  Google Scholar 

  50. Á. Gutiérrez, A. Campo, F. Santos, F. Monasterio-Huelin Maciá, M. Dorigo: Social odometry: Imitation based odometry in collective robotics, Int. J. Adv. Robot. Syst. 6(2), 129–136 (2009)

    Google Scholar 

  51. W. Burgard, M. Moors, D. Fox, R. Simmons, S. Thrun: Collaborative multi-robot exploration, Proc. IEEE Int. Conf. Robot. Autom. (ICRA '00), San Francisco (2000) pp. 476–481

    Google Scholar 

  52. D. Payton, M. Daily, R. Estowski, M. Howard, C. Lee: Pheromone robotics, Auton. Robot. 11(3), 319–324 (2001)

    Article  MATH  Google Scholar 

  53. D. Payton, R. Estkowski, M. Howard: Progress in pheromone robotics. In: Intelligent Autonomous Systems 7, ed. by M. Gini, W.-M. Shen, C. Torras, H. Yuasa (IOS, Amsterdam 2002) pp. 256–264

    Google Scholar 

  54. A. Howard, M.J. Matarić, G.S. Sukhatme: An incremental self-deployment algorithm for mobile sensor networks, Auton. Robot. 13(2), 113–126 (2002)

    Article  MATH  Google Scholar 

  55. M. Batalin, G. Sukhatme: Spreading out: A local approach to multi-robot coverage. In: Distributed Autonomous Robotic Systems 5, ed. by H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Springer, Berlin, Heidelberg 2002) pp. 373–382

    Chapter  Google Scholar 

  56. B.B. Werger, M.J. Matarić: Robotic food chains: Externalization of state and program for minimal-agent foraging, Proc. 4th Int. Conf. Simul. Adapt. Behav. Anim. Animat., ed. by P. Maes, M.J. Matarić, J. Meyer, J. Pollack, S. Wilson (MIT, Cambridge 1996) pp. 625–634

    Google Scholar 

  57. S. Nouyan, R. Groß, M. Bonani, F. Mondada, M. Dorigo: Teamwork in self-organized robot colonies, IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)

    Article  Google Scholar 

  58. L. Chittka, P. Skorupski, N.E. Raine: Speed–accuracy tradeoffs in animal decision making, Trends Ecol. Evol. 24(7), 400–407 (2009)

    Article  Google Scholar 

  59. N.R. Franks, A. Dornhaus, J.P. Fitzsimmons, M. Stevens: Speed versus accuracy in collective decision making, Proc. R. Soc. B 270(1532), 2457–2463 (2003)

    Article  Google Scholar 

  60. J.A.R. Marshall, A. Dornhaus, N.R. Franks, T. Kovacs: Noise, cost and speed-accuracy trade-offs: Decision-making in a decentralized system, J. R. Soc. Interface 3(7), 243–254 (2006)

    Article  Google Scholar 

  61. A. Gutiérrez, A. Campo, F.C. Santos, F. Monasterio-Huelin, M. Dorigo: Social odometry: Imitation based odometry in collective robotics, Int. J. Adv. Robot. Syst. 6(2), 1–8 (2009)

    Google Scholar 

  62. F. Galton: Vox populi, Nature 75, 450–451 (1907)

    Article  MATH  Google Scholar 

  63. A.M. Simons: Many wrongs: The advantage of group navigation, Trends Ecol. Evol. 19(9), 453–455 (2004)

    Article  Google Scholar 

  64. E.A. Codling, J.W. Pitchford, S.D. Simpson: Group navigation and the many-wrongs principle in models of animal movement, Ecology 88(7), 1864–1870 (2007)

    Article  Google Scholar 

  65. J.-L. Deneubourg, S. Goss: Collective patterns and decision-making, Ethol. Ecol. Evol. 1, 295–311 (1989)

    Article  Google Scholar 

  66. R. Beckers, J.-L. Deneubourg, S. Goss, J.M. Pasteels: Collective decision making through food recruitment, Insectes Soc. 37(3), 258–267 (1990)

    Article  Google Scholar 

  67. T.D. Seeley, S. Camazine, J. Sneyd: Collective decision-making in honey bees: How colonies choose among nectar sources, Behav. Ecol. Sociobiol. 28(4), 277–290 (1991)

    Article  Google Scholar 

  68. T.D. Seeley, S.C. Buhrman: Nest-site selection in honey bees: How well do swarms implement the best-of-N decision rule?, Behav. Ecol. Sociobiol. 49(5), 416–427 (2001)

    Article  Google Scholar 

  69. F. Saffre, R. Furey, B. Krafft, J.-L. Deneubourg: Collective decision-making in social spiders: Dragline-mediated amplification process acts as a recruitment mechanism, J. Theor. Biol. 198(4), 507–517 (1999)

    Article  Google Scholar 

  70. J.M. Amé, J. Halloy, C. Rivault, C. Detrain, J.-L. Deneubourg: Collegial decision making based on social amplification leads to optimal group formation, Proc. Natl. Acad. Sci. USA 103(15), 5835–5840 (2006)

    Article  Google Scholar 

  71. O. Petit, J. Gautrais, J.B. Leca, G. Theraulaz, J.-L. Deneubourg: Collective decision-making in white-faced capuchin monkeys, Proc. R. Soc. B 276(1672), 3495 (2009)

    Article  Google Scholar 

  72. P. Michelena, R. Jeanson, J.-L. Deneubourg, A.M. Sibbald: Personality and collective decision-making in foraging herbivores, Proc. R. Soc. B 277(1684), 1093 (2010)

    Article  Google Scholar 

  73. S. Goss, S. Aron, J.-L. Deneubourg, J.M. Pasteels: Self-organized shortcuts in the Argentine ant, Naturwissenschaften 76(12), 579–581 (1989)

    Article  Google Scholar 

  74. D.J.T. Sumpter, J. Krause, R. James, I.D. Couzin, A.J.W. Ward: Consensus decision making by fish, Curr. Biol. 18(22), 1773–1777 (2008)

    Article  Google Scholar 

  75. A.J.W. Ward, D.J.T. Sumpter, I.D. Couzin, P.J.B. Hart, J. Krause: Quorum decision-making facilitates information transfer in fish shoals, Proc. Natl. Acad. Sci. USA 105(19), 6948 (2008)

    Article  Google Scholar 

  76. S.C. Pratt, E.B. Mallon, D.J. Sumpter, N.R. Franks: Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis, Behav. Ecol. Sociobiol. 52(2), 117–127 (2002)

    Article  Google Scholar 

  77. D.J.T. Sumpter, S.C. Pratt: Quorum responses and consensus decision making, Philos. Trans. R. Soc. B 364(1518), 743–753 (2009)

    Article  Google Scholar 

  78. S. Canonge, J.-L. Deneubourg, S. Sempo: Group living enhances individual resources discrimination: The use of public information by cockroaches to assess shelter quality, PLoS ONE 6(6), e19748 (2011)

    Article  Google Scholar 

  79. T.D. Seeley, P.K. Visscher, T. Schlegel, P.M. Hogan, N.R. Franks, J.A.R. Marshall: Stop signals provide cross inhibition in collective decision-making by honeybee swarms, Science 335(6064), 108–111 (2012)

    Article  Google Scholar 

  80. S. Garnier, J. Gautrais, M. Asadpour, C. Jost, G. Theraulaz: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots, Adapt. Behav. 17(2), 109–133 (2009)

    Article  Google Scholar 

  81. J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Said, V. Durier, S. Canonge, J.M. Amé, C. Detrain, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, J.L. Deneubourg: Social integration of robots into groups of cockroaches to control self-organized choices, Science 318(5853), 1155 (2007)

    Article  Google Scholar 

  82. R. Olfati-Saber, R.M. Murray: Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  83. R. Olfati-Saber, J.A. Fax, R.M. Murray: Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  84. T. Schmickl, R. Thenius, C. Moeslinger, G. Radspieler, S. Kernbach, M. Szymanski, K. Crailsheim: Get in touch: Cooperative decision making based on robot-to-robot collisions, Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)

    Article  Google Scholar 

  85. K. Sugawara, T. Kazama, T. Watanabe: Foraging behavior of interacting robots with virtual pheromone, Proc. Int. Conf. Intell. Robot. Syst. (IROS 2004) (2004) pp. 3074–3079

    Google Scholar 

  86. S. Garnier, F. Tâche, M. Combe, A. Grimal, G. Theraulaz: Alice in pheromone land: An experimental setup for the study of ant-like robots, Proc. IEEE Swarm Intell. Symp. (SIS 2007), Piscataway (2007) pp. 37–44

    Chapter  Google Scholar 

  87. A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli, V. Longchamp, S. Garnier, M. Dorigo: Artificial pheromone for path selection by a foraging swarm of robots, Biol. Cybern. 103(5), 339–352 (2010)

    Article  Google Scholar 

  88. E.J.H. Robinson, N.R. Franks, S. Ellis, S. Okuda, J.A.R. Marshall: A simple threshold rule is sufficient to explain sophisticated collective decision-making, PLoS ONE 6(5), e19981 (2011)

    Article  Google Scholar 

  89. M. Dorigo, D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A.L. Christensen, A. Decugnire, G.A. Di Caro, F. Ducatelle, E. Ferrante, A. Fröster, J.M. Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M.A. de Montes Oca, R. O'Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A.E. Turgut, F. Vaussard: Swarmanoid: A novel concept for the study of heterogeneous robotic swarms, IEEE Robot. Autom. Mag. 20(4), 60–71 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Trianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trianni, V., Campo, A. (2015). Fundamental Collective Behaviors in Swarm Robotics. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics