Skip to main content

Sulfur in the Earth’s Mantle — A Review

  • Chapter
Early Organic Evolution

Abstract

The average sulfur content of the Upper Mantle is about 300 to 400 ppm. Basaltic melts contain up to about 1000 ppm sulfur. Sometimes spherules show that an immiscible sulfíde melt separated from the silicate melt. Almost all sulfides observed, however, are later reequilibration products formed during cooling or alteration. This also applies to sulfíde inclusions in mantle rock xenoliths and even in diamonds. Sulfur isotope ratios in primary mantle material are close to those of meteorites; for the primitive upper mantle, δ34S≈+ 0.5 per mill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre C-J, Michard G (1974) Introduction to geochemistry. Reidel, Dordrecht Boston, 142 pp

    Book  Google Scholar 

  • Andersen T, Griffin WL, O’Reilly SY (1987) Primary sulphide melt inclusions in mantle-derived megacrysts and pyroxenites. Lithos 20:279–294

    Article  Google Scholar 

  • Anderson AT (1974) Chlorine, sulfur, and water in magmas and oceans. Geol Soc Am Bull 85:1485–1492

    Article  Google Scholar 

  • Barton PB Jr (1970) Sulfide petrology. Min Soc Am Spec Pap 3:187–198

    Google Scholar 

  • Barton PB Jr, Skinner BJ (1967) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt Rinehart Winston, New York, pp236– 333

    Google Scholar 

  • Basaltic Volcanism Study Project (1981) Ultramafic xenoliths in terrestrial volcanisms and mantle magmatic processes. In: Basaltic volcanism on the terrestrial planets. Pergamon, New York, pp 282–310

    Google Scholar 

  • BellPM, England JL, Kullerud G (1964) Pentlandite pressure effect on breakdown. Carnegie Inst Washington Yearb 63:206–207

    Google Scholar 

  • Bishop FC, Smith JV, Dawson JB (1975) Pentlandite-magnetite intergrowth in De Beers spinel lherzolite: review of sulphides in nodules. Phys Chem Earth 9: 323–337

    Article  Google Scholar 

  • Bobrievich AP, Lupin JP, Kozlov IT, Lebedev LI, Pan-kratov AA, Smirnov GI, Khariv AD (1964) Petrography and mineralogy of the kimberlite rocks in Yakutia. Nedra Izdat, Moscow (in Russian)

    Google Scholar 

  • Boyd FR, Gurney JJ (1986) Diamonds and the African lithosphere. Science 232:472–477

    Article  Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1989) Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet Sci Lett 92:144–156

    Article  Google Scholar 

  • Clarke DB (1979) Synthesis of nickeloan djerfisherites and the origin of potassic sulphides at the Frank Smith Mine. In: Boyd FR, Meyer HOA (eds) Proc 2nd Int Kimberlite Conf vol 2. AGU, Washington, pp 300–308

    Google Scholar 

  • Dawson JE (1980) Kimberlites and their xenoliths. Springer, Berlin Heidelberg New York, 252 pp

    Book  Google Scholar 

  • Desborough GA, Czamanske GK (1973) Sulfides in eclogite nodules from a kimberlite pipe, South Africa. Am Min 58:195–202

    Google Scholar 

  • De WaalSA, Calk LC (1975) The sulfides in the garnet pyroxenite xenoliths from Salt Lake Crater, Oahu. J Petrol 16:134–153

    Google Scholar 

  • Frick C (1973) The sulphides in griquaite and garnetperidotite xenoliths in kimberlite. Contrib Mineral Petrol 39:1–16

    Article  Google Scholar 

  • Graterol M, Naldrett AJ (1971) Mineralogy of the Marbrid-ge No. 3 and No. 4 nickel-iron sulfide deposits, with some comments on low temperature equilibration in the Fe-Ni-S system. Econ Geol 66:886–900

    Article  Google Scholar 

  • Grinenko VA, Ukhanov AV (1977) Sulfur levels and isotopic compositions in upper-mantle xenoliths from the Obnaz-hennaya kimberlite pipe. Geochem Int 14(6): 169–171 (transl from Geokhimiya 1977: 1872–1875)

    Google Scholar 

  • Harris JW, Gurney JJ (1982) The abundance, mineralogy and chemistry of sulphide inclusions in diamonds. Terra Cognita 2:201

    Google Scholar 

  • Harting P (1859) Ein Diamant mit eingeschlossenen Kry-stallen. N Jahrb Mineral Geol Paläontol 1859:192– 193

    Google Scholar 

  • Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69: 451–467

    Article  Google Scholar 

  • Ilupin IP (1962) On successive stages in kimberlite intrusion. Geol Geofiz 1972: 151–157 (in Russian)

    Google Scholar 

  • Ivanov VV, Ilupin IP, Starozhitskaya MI, Gross Yul (1977) Distribution of Cu, Ag, and Au in Yakutia plutonic xenoliths and kimberlites. Geoch Int 14 (4):48–60 (transl from Geokhimiya 1977:1038–1051)

    Google Scholar 

  • Kogarko LN (1972) The role of compounds of oxygen, sulphur and carbon in a magmatic gas phase of alkaline rocks. Proc 24th Int Geol Congr 10:20–24

    Google Scholar 

  • Kramers JD (1979) Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from southern Africa. Earth Planet Sci Lett 42:58–70

    Article  Google Scholar 

  • Kullerud G (1963) The Fe-Ni-S system. Carnegie Inst Washington Yearb 62:175–189

    Google Scholar 

  • Kullerud G, Yoder HS Jr (1959) Pyrite stability relations in the Fe -S system. Econ Geol 54: 533–572

    Article  Google Scholar 

  • Kullerud G, Yund RA, Moh G (1969) Phase relations in the Cu -Fe -S, Cu -Ni -S, and Fe -Ni -S systems. Econ Geol Monogr 4:323–343

    Google Scholar 

  • Kyser TK (1986) Stable isotope variations in the mantle. Rev Min 16:141–164

    Google Scholar 

  • Lambert G, Le Cloarec M-F, Pennisi M (1988) Volcanic output of SO2 and trace metals: a new approach. Geo-chim Cosmochim Acta 52:39–42

    Article  Google Scholar 

  • LorandJP (1985) The behaviour of the upper mantle sulfide component during the incipient alteration of “Alpine”-type peridotites as illustrated by the Beni Bousera (northern Morocco) and Ronda (southern Spain) ultramafic bodies. Tschermaks Mineral Petrol Mitt 34:183–209

    Article  Google Scholar 

  • Lorand JP, Conquéré F (1983) Contribution à l’étude des sulfures dans les enclaves de lherzolite à spinelle des basaltes alcalins (Massif Central et Languedoc, France). Bull Min 106:585–605

    Google Scholar 

  • MacLean WH (1969) Liquidus phase relations in the FeS -FeO -Fe3O4 -SiO2 system, and their application in geology. Econ Geol 64: 865–884

    Article  Google Scholar 

  • MacRae ND (1979) Silicate glass and sulfides in ultramafic xenoliths, Newer Basalts, Victoria, Australia. Contrib Mineral Petrol 68:275–280

    Article  Google Scholar 

  • Meyer HOA, Tsai H-M (1976) The nature and significance of mineral inclusions in natural diamond -a review. Min SciEng 8:242–261

    Google Scholar 

  • Meyer HOA, Tsai H-M (1979) Inclusions in diamond and the mineral chemistry of the upper mantle. Phys Chem Earth 11:631–644

    Article  Google Scholar 

  • Mitchell RH (1975) Theoretical aspects of gaseous and isotopic equilibria in the system C -H -O -S with application to kimberlite. Phys. Chem Earth 9: 903–915

    Article  Google Scholar 

  • Mitchell RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45: 2425–2442

    Article  Google Scholar 

  • Moore JG, Fabbi BP (1971) An estimate of the juvenile sulfur content of basalt. Contrib Mineral Petrol 33: 118– 127

    Article  Google Scholar 

  • Murck BW, Burruss RC, Hollister LS (1978) Phase equilibria in fluid inclusions in ultramafic xenoliths. Am Min 63:40–46

    Google Scholar 

  • Newson HE, Palme H (1984) The depletion of siderophile elements in the Earth’s mantle: new evidence from molybdenum and tungsten. Earth Planet Sci Lett 69:354–364

    Article  Google Scholar 

  • Nielsen H (1978) Sulfur. Isotopes in nature. In: Wedepohl KH (ed) Handbook of geochemistry, volII-2. Springer, Berlin Heidelberg New York, pp 16-B-1-16-B-40

    Google Scholar 

  • Ringwood AE (1966) The chemical composition and origin of the earth. In: Hurley PM (ed) Advances in earth science. MIT, Cambridge, Mass, pp 287–356

    Google Scholar 

  • Robinson DN (1979) Diamond and graphite in eclogite xenoliths from kimberlite. In: Boyd FR, Meyer HOA (eds) Proc 2nd Int Kimberlite Conf, vol 2. AGU, Washington, pp 50–58

    Google Scholar 

  • Sakai H, Des Marais DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441

    Article  Google Scholar 

  • Saxena SK (1989) Oxidation state of the mantle. Geochim Cosmochim Acta 53:89–95

    Article  Google Scholar 

  • Schmitt W, Palme H, Wänke H (1989) Experimental determination of metal silicate partition coefficients for P, Co, Ni, Cu, Ga, Ge, Mo, and W and some implications for the early evolution of the Earth. Geochim Cosmochim Acta 53:173–185

    Article  Google Scholar 

  • Schneider A (1970) The sulfur isotope composition of basaltic rocks. Contrib Mineral Petrol 25:95–124

    Article  Google Scholar 

  • Schneider A (1978) Sulfur. Abundances in common igneous rocks. In: Wedepohl KH (ed) Handbook of geochemistry, volII-2. Springer, Berlin Heidelberg New York, pp l6-E-l-16-E-19

    Google Scholar 

  • Sharp WE (1966) Pyrrhotite: a common inclusion in South African diamonds. Nature (London) 211:402–403

    Article  Google Scholar 

  • Skinner BJ, Peck DL (1969) An immiscible sulfide melt from Hawaii. Econ Geol Monogr 4:310–322

    Google Scholar 

  • Sobolev NV, Vakhrushev VA (1967) Sulfìdes in pyrope peridotites in kimberlites from Yakutia. Zap Vses Min Obshch 96(4):450 (in Russian)

    Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotopic variation of C, H, and S. Rev Min 16:185–225

    Google Scholar 

  • Tsai H-M, Shieh Y-N, Meyer HOA (1979) Mineralogy and S34/S32 ratios of sulfides associated with kimberlite, xenoliths and diamonds. In: Boyd FR, Meyer HOA (eds) Proc 2nd Int Kimberlite Conf, vol 2. AGU, Washington, pp 87–100

    Google Scholar 

  • Vakrushev VA, Kutolin VA (1970) Sulfides in ultramafic inclusions from diatremes of the north Minusinsk depression. Dokl Akad Nauk SSSR 192: 157–160 (transl from pp1130–1133 in Russian Original of Dokl Akad Nauk SSSR 192)

    Google Scholar 

  • Virgo D, LuthRW, Moats MA, Ulmer GC (1988) Constraints on the oxidation state of the mantle: an electrochemical and 57Fe Mössbauer study of mantle-derived ilmenites. Geochim Cosmochim Acta 52: 1781–1794

    Article  Google Scholar 

  • Von Gehlen K (1967) Sulphur isotopes from the sulphide-bearing carbonatite of Palabora, South Africa. Trans Inst Min Metall 76:B223

    Google Scholar 

  • Wagner PA (1914) The diamond fields of southern Africa. Transvaal Leader, Johannesburg, pp 290–308

    Google Scholar 

  • Wedepohl KH (ed) (1978) Handbook of geochemistry, vol II-2: 16 sulfur. Springer, Berlin Heidelberg New York (loose-leaf)

    Google Scholar 

  • Welke HJ, Allsopp HL, Harris JW (1974) Measurements of K, Rb, U, Sr and Pb in diamonds containing inclusions. Nature (London) 252:35–37

    Article  Google Scholar 

  • White RW (1966) Ultramafic inclusions in basaltic rocks from Hawaii.Contrib Mineral Petrol 12:245–314

    Article  Google Scholar 

  • Woermann E, Rosenhauer M (1985) Fluid phases and the redox state of the Earth’s mantle. Extrapolations based on experimental, phase-theoretical and petrological data. Fortschr Mineral 63:263–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Gehlen, K. (1992). Sulfur in the Earth’s Mantle — A Review. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics