Skip to main content

Abstract

Sophora japonica L. (Fabaceae) is a well-known herbal medicine which has been used in traditional Chinese medicine for a long time. Three entries are listed in the Chinese Pharmacopoeia:

  • Huaimi, Flos Sophora immaturus, is the dry flower buds of S. japonica collected in summer. The rutin content in the flower buds should not be less than 20%. It is used mainly as a hemostatic agent for the treatment of different hemorrhagic diseases.

  • Huaihua, Flos Sophorae, is the dry flowers of S. japonica collected in summer when the plant has flowered. The rutin content in flowers should not be less than 8%. The medicinal indications of the flower are similar to those of flower buds for treatment of different hemorrhagic diseases.

  • Huaijiao, Fructus Sophorae, is the dry ripe fruits of S. japonica collected in winter. It is used for treatment of intestinal hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shimizu M, Ohta G (1952) Solubilization of flavonoids. VIII. Glucosides in flos sophorae japonicae. J Pharm Soc Jpn 72:331–333

    CAS  Google Scholar 

  2. Schindler H (1954) Sophora japonica, an East Asian drug rich in rutin. The history of rutin. Dtsch Apoth Ztg 94:995–997

    CAS  Google Scholar 

  3. Karrer W (1976) Konstitution und Vorkommen der organischen Pflanzenstoffe, 2nd edn. Birkhäuser, Basel, pp 614–615

    Google Scholar 

  4. Foerster P (1882) Zur Identitätsfrage der Farbstoffe der chinesischen Gelbbeeren, der Kapern und der Raute mit dem Quercitrin und Quercetin. Chem Ber 15:214–217

    Article  Google Scholar 

  5. Hlasiwetz H (1859) Ueber das Quercitrin. Liebigs Ann Chem 112:96–117

    Article  Google Scholar 

  6. Kostanecki S, Tambor J (1895) Über die Constitution des Fisetins. Chem Ber 28:2302–2309

    Article  Google Scholar 

  7. Attree GF, Perkin AG (1927) The position of the sugar nucleus in the quercetin glucosides. J Chem Soc 234–240

    Google Scholar 

  8. Tabata M (1975) Quantitative distribution of rutin in the panicles and flower organs of Sophora japonica. Shoyakugaku Zasshi 29:93–95

    CAS  Google Scholar 

  9. Balbaa SI, Zaki AY, El Shamy AM (1974) Total flavonoid and rutin content of the different organs of Sophora japonica. J Assoc Off Anal Chem 57:752–755

    CAS  Google Scholar 

  10. Kariyone T, Ishimasa S, Shiomi T (1956) Triterpenoids. VIII. Triterpenoids contained in Sophora japonica. J Pharm Soc Jpn 76:1210–1211

    CAS  Google Scholar 

  11. Kimura K, Takahashi M, Ishimasa S, Kodama Y (1958) Components of Sophora japonica. II. Structure of sophoradiol. Yakugaku Zasshi 78:1090–1094

    CAS  Google Scholar 

  12. Ishimasa S (1960) Components of Sophora japonica. III. Stereochemistry of sophoradiol. Yakugaku Zasshi 80:304–310

    CAS  Google Scholar 

  13. Clancy MJ (1960) Sophorose and its derivatives. J Chem Soc 4213–4217

    Google Scholar 

  14. Ho LX, Xu YX, Xue HZ, Wang WH, Zhou ZR, Chen PY, Fan MF (1982) Studies on the antifertility constituents of Huai Jiao. I. Isolation of constituents I-XI and identification of I-IV and IX. Reprod Contracept 2:23–27

    CAS  Google Scholar 

  15. Ho LX, Xu YX, Xue HZ (1984) Studies on antifertility constituents of Huai Jiao. II. Separation and identification of four compounds V-VIII. Reprod Contracept 4:51–53

    CAS  Google Scholar 

  16. Liu JS, Tiu CM, Huang MF (1980) Study on the active constituents of Sophora japonica L. Chin Trad Herb Drugs 11:145–146

    CAS  Google Scholar 

  17. Szabo V, Bognar R, Farkas E, Litkei G (1967) The glycosides of the fruit of Sophora japonica. VII. Acta Univ Debrecen Ludovico Kossuth Nominatae, Ser Phys Chim 13:129–144 (CA 69:16776t)

    CAS  Google Scholar 

  18. Charaux C, Rabate J (1938) Biochemical study of the fruits of Sophora japonica L. I. Presence of sophoricoside. Bull Soc Chim Biol 20:454–458

    CAS  Google Scholar 

  19. Zemplen G, Bognar R, Farkas L (1943) Determination of the structure of sophoricoside, an isoflavone glycoside of Sophora japonica L. Chem Ber 76B:267–272

    CAS  Google Scholar 

  20. Zemplen G, Bognar R (1942) Sophorabioside, an new glucoside from Sophora japonica. L. Chem Ber 75B:482–489

    CAS  Google Scholar 

  21. Farkas L, Nogradi M, Wagner H, Hoerhammer L (1968) Isoflavone glycosides. X. Final structure determination and total synthesis of sophorabioside, a glycoside from Sophora japonica. Chem Ber 101:2758–2761

    Article  PubMed  CAS  Google Scholar 

  22. Akhmedkhodzhaeva NM, Svechnikova AN, Bandyukova VA, Kambarova DM (1986) Determination of flavones in Sophora japonica fruits. Farmatsiya (Mosk) 35:60–61

    CAS  Google Scholar 

  23. Freudenberg K, Knauber H, Cramer F (1951) Die Übereinstimmung der Sophorose mit 2-(ß-Glucosido)-glucose. Chem Ber 84:144–146

    Article  CAS  Google Scholar 

  24. Abdusalamov BA, Aslanov KA, Sadykov AS, Khoroshkova OA (1972) Level of alkaloids in Sophora japonica. Khim Prir Soedin 658

    Google Scholar 

  25. Komatsu M, Yokoe I, Shirataki Y (1976) Studies on the constituents of Sophora species. X. Constituents of the root of Sophora japonica L. Yakugaku Zasshi 96:254–257

    PubMed  CAS  Google Scholar 

  26. Shibata S, Nishikawa Y (1963) Constituents of Japanese and Chinese crude drugs. VII. Constituents of the roots of Sophora subprostrata and Sophora japonica. Chem Pharm Bull (Tokyo) 11:167–177

    CAS  Google Scholar 

  27. Takeda T, Ishiguro I, Masegi M, Ogihara Y (1977) New isoflavone glycosides from the woods of Sophora japonica. Phy tochemistry 16:619–620

    CAS  Google Scholar 

  28. Stan HJ, Hunt W (1984) Flavonols — mutagens in our daily nutrition. Dtsch Lebensm Rundsch 80:85–87

    CAS  Google Scholar 

  29. Hardigree AA, Epier JL (1978) Comparative mutagenesis of plant flavonoids in microbial system. Mutat Res 58:231–239

    Article  PubMed  CAS  Google Scholar 

  30. Brown JP, Dietrich PS, Brown RJ (1977) Frameshift mutagenicity of certain naturally occurring phenolic compounds in the Salmonella/microsome test. Activation of anthraquinone and fla-vanol glycosides by gut bacterial enzymes. Biochem Soc Trans 5:1489–1492

    PubMed  CAS  Google Scholar 

  31. Sugimura T, Minako M, Matsushima T, Yahagi T, Seino Y, Shirai A, Sawamura M, Natori S, Yoshihira K (1977) Mutagenicity of flavone derivatives. Proc Jpn Acad [B] 53:194–197

    Article  CAS  Google Scholar 

  32. Brown JP, Dietrich PS (1979) Mutagenicity of plant flavonols in the Salmonella/mammalian microsome test. Activation of flavonol glycosides by mixed glycosidase from rat cecal bacteria and other sources. Mutat Res 66:223–240

    Article  PubMed  CAS  Google Scholar 

  33. Busch DB, Hatcher JF, Bryan GT (1986) Urine recovery experiments with quercetin and other mutagens using the Ames test. Environ Mutagen 8:393–399

    Article  PubMed  CAS  Google Scholar 

  34. Nagao M, Marita N, Yahagi T, Shimizu M, Kuroyanagi M, Fukuoka M, Yoshihara K, Natori S, Fujino T, Sugimura T (1981) Mutagenicities of 61 flavonoids and 11 related compounds. Environ Mutagen 3:401–419

    Article  PubMed  CAS  Google Scholar 

  35. MacGregor JT, Jurd L (1978) Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonella typhimurium. Mutat Res 54:297–309

    PubMed  CAS  Google Scholar 

  36. Hatcher JF, Bryon GT (1985) Factors affecting the mutagenic activity of quercetin for Salmonella typhimurium TA 98: metal ions, antioxidants and pH. Mutat Res 148:13–23

    Article  PubMed  CAS  Google Scholar 

  37. Friedman M, Smith GA (1984) Inactivation of quercetin mutagenicity. Food Chem Toxicol 22:535–539

    Article  PubMed  CAS  Google Scholar 

  38. Friedman M, Smith GA (1984) Factors which facilitate inactivation of quercetin mutagenicity. Adv Exp Med Biol 177:527–544

    PubMed  CAS  Google Scholar 

  39. Meltz ML, MacGregor JT (1981) Activity of the plant flavonol quercetin in the mouse lymphoma L 5178y TK+/- mutation, DNA single-strand break and Balb/c3T3 chemical transformation assays. Mutat Res 88:317–324

    Article  PubMed  CAS  Google Scholar 

  40. Watson WAF (1982) The mutagenic activity of quercetin and kaempferol in Drosophila melanogaster. Mutat Res 103:145–147

    Article  PubMed  CAS  Google Scholar 

  41. Aeschbacher HU, Meier H, Ruch E (1982) Nonmutagenicity in vivo of the food flavonol quercetin. Nutr Cancer 4:90–98

    Article  PubMed  CAS  Google Scholar 

  42. Fukuhara Y, Yoshida D, Goto F (1981) Reduction of mutagenic products in the presence of polyphenols during pyrolysis of protein. Agric Biol Chem 45:1061–1066

    Article  CAS  Google Scholar 

  43. Hang BQ, Wu Y, Hang S, Yang Y, Wang MS (1985) Effect of quercetin and rutin on the occurrence of micronuclei in mouse bone-marrow polychromatic erythrocytes. J Nanjing Coll Pharm 16:52–55

    CAS  Google Scholar 

  44. Huang MT, Wood AW, Newmark HL, Sayer JM, Yagi H, Jerina DM, Conney AH (1983) Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by phenolic plant flavonoids. Carcinogenesis 4:1631–1637

    Article  PubMed  CAS  Google Scholar 

  45. Ogawa S, Hirayama T, Nohara M, Tokuda M, Hirai K, Fukui S (1985) The effect of quercetin on the mutagenicity of 2-acetylaminofluorene and benz[a]-pyrene in Salmonella typhimurium strains. Mutat Res 142:103–107

    Article  PubMed  CAS  Google Scholar 

  46. Ogawa S, Hirayama T, Tokuda M, Hirai K, Fukui S (1986) The effect of quercetin, a mutagenic-ity-enhancing agent, on the metabolism of 2-acetylaminofluorene with mammalian metabolic activation systems. Mutat Res 162:179–186

    Article  PubMed  CAS  Google Scholar 

  47. Hirano I, Ueno I, Hosaka S, Takanashi H, Matsushima T, Sugimura T, Natori S (1981) Carcinogenicity examination of quercetin and rutin in ACI rats. Cancer Lett 13:15–21

    Article  Google Scholar 

  48. Saito D, Shirai A, Matsushima T, Sugimura T, Hirono I (1980) Test of carcinogenicity of quercetin, a widely distributed mutagen in food. Teratogenesis Carcinog Mutagen 1:213–221

    Article  PubMed  CAS  Google Scholar 

  49. Morino K, Matsukura N, Kawachi T, Ohgaki H, Sugimura T, Hirono I (1982) Carcinogenicity test of quercetin and rutin in golden hamsters by oral administration. Carcinogenesis 3:93–97

    Article  PubMed  CAS  Google Scholar 

  50. Stoewsand GS, Anderson JL, Boyd JN, Hrazdina G, Babish JG, Walsh KM, Losco P (1984) Quercetin: a mutagen, not a carcinogen, in Fisher rats. J Toxicol Environ Health 14:105–114

    Article  PubMed  CAS  Google Scholar 

  51. Takanashi H, Aiso S, Hirono I, Matsushima T, Sugimura T (1983) Carcinogenicity test of quercetin and kaempferol in rats by oral administration. J Food Safety 5:55–60

    Article  CAS  Google Scholar 

  52. Habs M, Habs H, Berger MR, Schmaehl D (1984) Negative dose-response study for carcinogenicity of orally administered rutin sulfate in Sprague-Dawley rats. Cancer Lett 23:103–108

    Article  PubMed  CAS  Google Scholar 

  53. Kato R, Nakadate T, Yamamoto S, Sugimura T (1983) Inhibition of 12-O-tetradecanoylphor-bol 13-acetate-induced tumor promotion and ornithine decarboxylase activity by quercetin: possible involvement of lipoxygenase inhibition. Carcinogenesis 4:1301–1305

    Article  PubMed  CAS  Google Scholar 

  54. Kato R, Nakadate T, Yamamoto S (1984) Involvement of lipoxygenase products of arachidonic acid in tumor-promoting activity of TPA. In: Thaler-Dao H, Crastes de Paulet A, Paoletti R (eds) Icosanoids Cancer. Raven, New York, pp 101–103

    Google Scholar 

  55. Nakadate T, Yamamoto S, Aizu E, Kato R (1984) 12-O-Tetradecanoylphorbol 13-acetate-caused increase in vascular permeability in mouse skin. II. Effects of caffeic acid derivatives, chalcone derivatives and calcium blockers on it. Ensho 4:554–556 (CA 102:99302c)

    Article  CAS  Google Scholar 

  56. Nishino H, Nishino A, Iwashima A, Tanaka K, Matsuura T (1984) Quercetin inhibits the action of 12-O-tetradecanoylphorbol 13-acetate, a tumor promoter. Oncology 41:120–123

    Article  PubMed  CAS  Google Scholar 

  57. Gschwendt M, Kittstein W, Marks F (1984) Stimulation of alkaline phosphatase activity in mouse epidermis by tumor promoters. Cancer Lett 22:219–225

    Article  PubMed  CAS  Google Scholar 

  58. Fanning MJ, Macander P, Drzewiecki G, Middleton E Jr (1983) Quercetin inhibits anaphylactic contraction of guinea pig ileum smooth muscle. Int Arch Allergy Appl Immunol 71:371–373

    Article  PubMed  CAS  Google Scholar 

  59. Middleton E Jr, Drzewiecki G (1982) Effects of flavonoids and transitional metal cations on antigen-induced histamine release from human basophils. Biochem Pharmacol 31:1449–1453

    Article  PubMed  CAS  Google Scholar 

  60. Middleton E Jr, Drzewiecki G, Krishnarao D (1981) Quercetin: an inhibitor of antigen-induced human basophil histamine release. J Immunol 127:546–550

    PubMed  CAS  Google Scholar 

  61. Michel F, Mercklein L, Rey R, Crastes de Paulet A (1986) Comparative effects of some flavonoids on cyclooxygenase and lipoxygenase activities in different cell systems or subfractions. Stud Org Chem (Amsterdam) 23:389–401

    CAS  Google Scholar 

  62. Van Wauwe J, Goosens J (1983) Effects of antioxidants on cyclooxygenase and lipoxygenase activities in intact human platelets: comparison with indomethacin and ETYA. Prostaglandins 26:725–730

    Article  PubMed  Google Scholar 

  63. Lanni C, Becker EL (1985) Inhibition of neutrophil phospholipase A2 by p-bromophenylacyl bromide, nordihydroguaiaretic acid, 5,8,11,14-eicosatetraenoic acid and quercetin. Int Arch Allergy Appl Immunol 76:214–217

    Article  PubMed  CAS  Google Scholar 

  64. Corvazier E, Maclouf J (1985) Interference of some flavonoids and nonsteroidal anti-inflammatory drug with oxidative metabolism and arachidonic acid by human platelets and neutrophils. Biochim Biophys Acta 835:315–321

    PubMed  CAS  Google Scholar 

  65. Beretz A, Cazenave JP, Anton R (1982) Inhibition of aggregation and secretion and human platelets by quercetin and other flavonoids: structure-activity relationship. Agents Actions 12:382–387

    Article  PubMed  CAS  Google Scholar 

  66. Beretz A, Stierle A, Anton R, Cazenave JP (1982) Role of cyclic AMP in the inhibition of human platelet aggregation by quercetin, a flavonoid that potentiated the effect of prostacyclin. Biochem Pharmacol 31:3597–3600

    Article  PubMed  CAS  Google Scholar 

  67. Landolfi R, Mower RL, Steiner M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relationship. Biochem Pharmacol 33:1525–1530

    Article  PubMed  CAS  Google Scholar 

  68. Nishino H, Tanaka K, Matusura T (1983) Quercetin inhibits the aggregation of human platelets. Kyoto-furitsu Ika Daigaku Zasshi 92:165–168 (CA 98:191481p)

    CAS  Google Scholar 

  69. He SP, Wei MC, Li RZ, He YQ, Zhang RY, Chen YY, Yue BZ, Lu YX (1982) Study on the inhibitory effect of flavonoids in some traditional Chinese medicines on phosphodiesterase. J Beijing Med Coll 14:253–257

    CAS  Google Scholar 

  70. He SP, Qiao J (1985) The inhibition kinetic study of flavonoids on cAMP phosphodiesterase. Shenwu Huaxue Zazhi 1:55–58

    CAS  Google Scholar 

  71. He SP, Wei MC, Pei YQ, Wang XY (1984) Mechanism of cardiotonic effect of flavonoids from some traditional Chinese drugs. Hejishu 41–43

    Google Scholar 

  72. Basarker PW, Nath N (1983) Hypocholesterolemic and hypolipidemic activity of quercetin — a vitamin P-like compound in rats. Indian J Med Res 77:122–126

    Google Scholar 

  73. Kato N, Tosa N, Doudou T, Imamura T (1983) Effects of dietary quercetin on serum lipids. Agric Biol Chem 47:2119–2120

    Article  CAS  Google Scholar 

  74. Shaikemeleva US (1983) Effect of rutin on cholesterol content in dog lymph, blood, and tissues. Byull Eksp Biol Med 95:53–57 (CA 98:196824n)

    Article  Google Scholar 

  75. Ueno I, Nakano N, Hirono I (1983) Metabolic fate of 14C-quercetin in the ACI rat. Jpn J Exp Med 53:41–50

    PubMed  CAS  Google Scholar 

  76. Gugler R, Leschik M, Dengler HJ (1975) Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol 9:229–234

    Article  PubMed  CAS  Google Scholar 

  77. Baba S, Futura T, Fujioka M, Goromaru T (1983) Studies on drug metabolism by use of isotopes. XXVII. Urinary metabolites of rutin in rats and the role of intestinal microflora in the metabolism of rutin. J Pharm Sci 72:1155–1158

    Article  PubMed  CAS  Google Scholar 

  78. Griffiths LA, Brown S (1983) New metabolites of naturally occurring flavonols; identification by E.I. mass spectrometry and chromatographic techniques. Anal Chem Symp Ser 14:121 – 124

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, W., Eisenbrand, G. (1992). Sophora japonica L.. In: Chinese Drugs of Plant Origin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73739-8_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73739-8_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73741-1

  • Online ISBN: 978-3-642-73739-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics