Skip to main content

Evolution and Environmental Control of Secretory Processes in Pineal Transducers

  • Chapter
Functional Morphology of Neuroendocrine Systems

Abstract

The pineal organ (pineal gland or epiphysis) of vertebrates displays an unusual anatomical diversity (Oksche 1965) as well as an unusual evolution of its cell types, particularly the pineal transducers (Collin 1971; Oksche 1971; Collin and Oksche 1981). In spite of their morphological heterogeneity, pineal organs of different vertebrate species share a common function: they are components of the circadian system and, as such, effect major physiological and behavioral adjustments to daily as well as seasonal fluctuations in the environment (Collin et al. 1986a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binkley SA (1981) Pineal biochemistry: comparative aspects and circadian rhythms. In: Reiter RJ (ed) The pineal gland. Vol. I: Anatomy and Biochemistry. CRC Press, Boca Raton, pp 155–172

    Google Scholar 

  • Binkley SA (1983a) Circadian rhythms of pineal function in rats. Endocrine Rev 4:255–270

    Article  Google Scholar 

  • Binkley SA (1983b) Rhythms in ocular and pineal N-acetyltransferase: A portrait of an enzyme clock. Comp Biochem Physiol 75A:123–129

    Article  Google Scholar 

  • Binkley SA, Muller G, Hernandez T (1981) Circadian rhythm in pineal N-acetyltransferase activity: phase shifting by light pulses. J Neurochem 37:798–800

    PubMed  CAS  Google Scholar 

  • Cardinali DP, Vacas MI, Rosenstein R, Lowenstein PR, Gonzalez Solveyra C, Romeo HE, Keller Sarmiento MI (1986) The pineal gland as a multi-effector organ. In: Reiter RJ, Karasek M (eds) Advances in Pineal Research, Vol.I. John Libbey, London Paris, pp 129–138

    Google Scholar 

  • Cassone VM, Menaker M (1983) Sympathetic regulation of chicken pineal rhythms. Brain Res 272:311–317

    Article  PubMed  CAS  Google Scholar 

  • Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh London, pp 79–120

    Google Scholar 

  • Collin JP (1979) Recent advances in pineal cytochemistry. Evidence of the production of indole-amines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of amniota. Prog Brain Res 52:271–296

    Article  PubMed  CAS  Google Scholar 

  • Collin JP (1981) New data and vistas on the mechanisms of secretion of proteins and indoles in the mammalian pinealocyte and its phylogenetic precursors; the pinealin hypothesis and preliminary comments on membrane traffic. In: Oksche A, P¨¦vet P (eds) The pineal organ: photobiology - biochronometry - endocrinology. Elsevier, Amsterdam, pp 187–210

    Google Scholar 

  • Collin JP (1985) Cellular biology of the pineal organ with special reference to some known and other hypothetical messenger substances; the CRL concept and outlook. In: Mess B, R¨²zsâs Cs, Tima L, P¨¦vet P (eds) The pineal gland; current state of pineal research. Akad¨¦miai Kiad¨®, Budapest, pp 91–110

    Google Scholar 

  • Collin JP, Brisson P, Falcon J, Voisin P (1986a) Multiple cell types in the pineal organ: functional aspects. In: O’Brien PJ, Klein DC (eds) Pineal and retinal relationships. Academic Press, New York London, pp 15–32

    Google Scholar 

  • Collin JP, Falcon J, Voisin P, Brisson P (1986b) The pineal organ: ontogenetic differentiation of photoreceptor cells and pinealocytes. In: Gupta D, Reiter RJ (eds) The pineal gland during development: from foetus to adult. Croom Helm, London Sydney, pp 14–30

    Google Scholar 

  • Collin JP, Meissl H, Voisin P, Brisson P, Falcon J (1986c) Rhythmic signals of pineal transducers: physiological, biochemical and cytochemical evidence. In: Reiter RJ, Karasek M (eds) Advances in pineal research, Vol. 1. John Libbey, London Paris, pp 41–50

    Google Scholar 

  • Collin JP, Oksche A (1981) Structural and functional relationships in the nonmammalian pineal gland. In: Reiter RJ (ed) The pineal gland, Vol. 1: Anatomy and Biochemistry. CRC Press, Boca Raton, pp 27–67

    Google Scholar 

  • Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D (1984) Magnetic field of the earth as additional Zeitgeber for endogenous rhythms? Naturwissenschaften 71:567–574

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T (1979) A circadian oscillator in cultured cells of chicken pineal gland. Nature 282:94–96

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T (1981) Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature 290:702–704

    Article  Google Scholar 

  • Diehl BJM, Heidbücher U, Welker HA, Vollrath L (1984) Day/night changes of pineal gland volume and pinealocyte nuclear size assessed over 10 consecutive days. J Neural Transm 60:19–29

    Article  PubMed  CAS  Google Scholar 

  • Dodt E (1987) Light sensitivity of the pineal organ in poikilothermic and homeothermic vertebrates. (This volume)

    Google Scholar 

  • Dombrowski TA, McNulty JA (1984) Morphometric analysis of the pineal complex of the golden hamster over a 24-hour light:dark cycle: I. The superficial pineal in untreated and optically enucleated animals. Am J Anat 171:359–368

    Article  PubMed  CAS  Google Scholar 

  • Falcon J, Collin JP (1985) In vitro uptake and metabolism of (3H)-indole compounds in the pineal organ of the pike. II. A radioautographic study. J Pineal Res 2:357–373

    Article  PubMed  CAS  Google Scholar 

  • Falcon J, Balemans MGM, Van Benthem J, Collin JP (1985) In vitro uptake and metabolism of (3H)-indole compounds in the pineal organ of the pike. I. A radiochromatographic study. J Pineal Res 2:341–356

    Article  PubMed  CAS  Google Scholar 

  • Gern WA, Kam CM (1983) Evolution of melatonin’s functions and effects. In: Reiter RJ (ed) Pineal Res Rev 1:49–90

    Google Scholar 

  • Grady RK, Caliguri JA, Mefford IN (1984) Day/night differences in pineal indoles in the adult pigeon (Columba livia). Comp Biochem Physiol 78C: 141–143

    CAS  Google Scholar 

  • Herbut¨¦ S (1983) Epithalamus et r¨¦gulations neuroendocriniennes. Th¨¨se de Doctorat d’Etat, Univ Montpellier, France

    Google Scholar 

  • Karasek M (1986) Quantitative aspects of the ultrastructure of the mammalian pinealocyte. In: Reiter RJ, Karasek M (eds) Advances in pineal research; Vol 1, John Libbey, London Paris, pp 9–18

    Google Scholar 

  • Karasek M, Jameson EW, Hansen JT, Reiter RJ (1983) Ultrastructure of the pineal gland of the brush mouse (Peromyscus boylei): influence of long and short photoperiod. J Neural Transm 56: 293–308

    Article  PubMed  CAS  Google Scholar 

  • Korf HW, Moller M (1985) The central innervation of the mammalian pineal organ. In: Mess B, R¨²zsâs Cs, Tima L, P¨¦vet P (eds) The pineal gland: Current state of pineal research, Akad¨¦miai Kiad¨®, Budapest, pp 47–69

    Google Scholar 

  • Korf HW, Vigh-Teichmann I (1984) Sensory and central nervous elements in the avian pineal organ. Ophthalmic Res 16:96–101

    Article  PubMed  CAS  Google Scholar 

  • Krasovich M, Benson B (1982) A study of the relationship between photoperiod and pinealocyte granulated vesicles in the golden Syrian hamster. Cell Tissue Res 223:155–163

    Article  PubMed  CAS  Google Scholar 

  • Kuwano R, Iwanaga T, Nakajima T, Masuda T, Takahashi Y (1983) Immunocytochemical demonstration of hydroxyindole 0-methyltransferase (HIOMT), neuron specific enolase (NSE) and S-100 protein in the bovine pineal gland. Brain Res 274:171–175

    Article  PubMed  CAS  Google Scholar 

  • Matsushima S, Morisawa Y, Aida I, Abe K (1983) Circadian variations in pinealocytes of the chinese hamster, Cricetulus griseus. A quantitative electron-microscopic study. Cell Tissue Res 228:231–244

    Article  PubMed  CAS  Google Scholar 

  • McNulty JA (1981) Synaptic ribbons in the pineal organ of the goldfish: circadian rhythmicity and the effects of constant light and constant darkness. Cell Tissue Res 215:491–497

    Article  PubMed  CAS  Google Scholar 

  • McNulty JA (1982a) The effects of constant light and constant darkness on daily changes in the morphology of the pineal organ in the goldfish, Carassius auratus. J Neural Transm 53:277–292

    Article  Google Scholar 

  • McNulty JA (1982b) The effects of constant light and constant darkness on the pineal organ of the goldfish, Carassius auratus. J Exp Zool 219:29–37

    Article  Google Scholar 

  • McNulty JA (1984) Responses of synaptic ribbons in pineal photoreceptors under normal and experimental lighting conditions. J Pineal Res 1:139–147

    Article  PubMed  CAS  Google Scholar 

  • McNulty JA (1985) Photoperiod effects on synaptic ribbons in the pineal organ. IRCS Med Sci 13:825

    Google Scholar 

  • McNulty JA (1986) Uptake and metabolism of indole compounds by the goldfish pineal organ. Gen Comp Endocrinol 61:179–186

    Article  PubMed  CAS  Google Scholar 

  • McNulty JA, Prechel MM, Andhya TK, Taylor D, Fox L, Dombrowski TA, Simmons WH (1986) Pineal ultrastructure and indole profiles spanning the summer rise in arginine vasotocin immunoreactivity. Endocrinology 117:1035–1042

    Article  Google Scholar 

  • Meissl H (1986) Photoneurophysiology of pinealocytes. In: O’Brien PJ, Klein DC (eds) Pineal and retinal relationships. Academic Press, New York London, pp 33–45

    Google Scholar 

  • Meissl H, Dodt E (1981) Comparative physiology of pineal photoreceptor organs. In: Oksche A, P¨¦vet P (eds). The pineal organ: photobiology biochemistry endocrinology. Elsevier, Biomedical Press, Amsterdam, pp 61–80

    Google Scholar 

  • Menaker M (1985) Eyes the second (and third) pineal glands? In: Evred D, Klark S (eds) Photoperiodism, melatonin and the pineal. Ciba Foundation Symposium 117, Pitman, London, pp 78–92

    Google Scholar 

  • Menaker M, Binkley SA (1981) Neural and endocrine control of circadian rhythms in the vertebrates. In: Aschoff J (ed) Handbook of behavioral neurobiology, Vol. 4, Biological rhythms, Plenum Press, New York London, pp 243–255

    Google Scholar 

  • Menaker M, Wisner S (1983) Temperature-compensated circadian clock in the pineal of Anolis. Proc Natl Acad Sci USA 80:6119–6121

    Article  PubMed  CAS  Google Scholar 

  • Oksche A (1965) Survey of the development and comparative morphology of the pineal organ. Prog Brain Res 10:3–28

    Article  PubMed  CAS  Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ: In: Wolstenholme GEW

    Google Scholar 

  • Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh London, pp 127–146

    Google Scholar 

  • Oksche A (1984) Evolution of the pineal complex: correlation of structure and function. Ophthalmic Res 16:88–95

    Article  PubMed  CAS  Google Scholar 

  • Oksche A, Hartwig HG (1979) Pineal sense organs, components of photoneuroendocrine systems. Prog Brain Res 52:113–130

    Article  PubMed  CAS  Google Scholar 

  • Olcese J, Reuss S (1986) Magnetic field effects on pineal gland melatonin synthesis: comparative studies on albino and pigmented rodents. Brain Res 369:365–368

    Article  PubMed  CAS  Google Scholar 

  • Omura Y, Ali MA (1980) Responses of pineal photoreceptors in the brook and rainbow trout. Cell Tissue Res 208:111–122

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1985) Action spectra, dose-response relationships, and temporal aspects of light’s effects on the pineal gland. Ann NY Acad Sci 453:215–230

    Article  PubMed  CAS  Google Scholar 

  • Reuss S, Olcese J (1986) Magnetic field effects on the rat pineal gland: role of retinal activation by light. Neurosci Lett 64:97–101

    Article  PubMed  CAS  Google Scholar 

  • Reuss S, Semm P, Vollrath L (1984) Electrophysiological investigations on central innervation of the rat and guinea-pig pineal gland. J Neural Transm 60:31–43

    Article  PubMed  CAS  Google Scholar 

  • Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol 76:683–689

    Article  Google Scholar 

  • Semm P, Demaine C (1984) Electrophysiology of the pigeon’s habenular nuclei: evidence for pineal connections and input from the visual system. Brain Res Bull 12:115–121

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Menaker M (1984) Multiple redundant circadian oscillators within the isolated avian pineal gland. J Comp Physiol A 54:435–440

    Article  Google Scholar 

  • Underwood H (1985) Pineal melatonin rhythms in the lizard Anolis carolinensis: effects of light and temperature cycles. J Comp Physiol A 157:57–65

    Article  PubMed  CAS  Google Scholar 

  • Vivien-Roels B (1983) The pineal gland and the integration of environmental information: possible role of hydroxy-and methoxyindoles. Mol Physiol 4:331–345

    CAS  Google Scholar 

  • Vivien-Roels B, P¨¦vet P (1983) The pineal gland and the synchronization of reproductive cycles with variations of the environmental climatic conditions, with special reference to temperature. Pineal Res Rev 1:91–143

    CAS  Google Scholar 

  • Voisin P, Collin JP (1986) Regulation of chicken pineal arylalkylamine-N-acetyltransferase by postsynaptic aZ-adrenergic receptors. Life Sci 39:2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Vollrath L (1981) The pineal organ. Hdb mikr Anat Mensch, VI/7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Welsh MG, Cameron IL, Reiter RJ (1979) The pineal gland of the gerbil, Meriones unguiculatus. II. Morphometric analysis over a 24-hour period. Cell Tissue Res 204:95–109

    Article  PubMed  CAS  Google Scholar 

  • White BH, Mosher K, Binkley SA (1985) Phase shift of daily profiles of N-acetyltransferase inthe rat pineal gland. J Pineal Res 2:201–208

    Article  PubMed  CAS  Google Scholar 

  • Wiechmann AF, Bok D, Horwitz J (1985) Localization of hydroxyindole-O-methyltransferase in the mammalian pineal gland and retina. Invest Ophthalmol Vis Sci 26:253–265

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collin, J.P., Voisin, P., Falcón, J., Brisson, P. (1987). Evolution and Environmental Control of Secretory Processes in Pineal Transducers. In: Scharrer, B., Korf, HW., Hartwig, HG. (eds) Functional Morphology of Neuroendocrine Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72886-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72886-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72888-4

  • Online ISBN: 978-3-642-72886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics