Skip to main content

Lunar Periodicity of Insect Flight and Migration

  • Conference paper
Insect Flight

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The desirability of studying lunar periodicity of insect flight was first pointed out by Hora (1927). Hartland-Row (1955) and Corbet (1958) provided experimental evidence in support of this phenomenon. They found that some Ephemeroptera, Trichoptera, and Diptera (Chironomidae) showed periodic fluctuations in numbers caught in light traps, and that this correlated closely with the age of the moon. The species differed in the position of their peak abundance in the lunar cycle and in the amplitude of the fluctuations. Peaks occurred 2–5 or 23–26 days before or after new moon or within 5 days of full moon (moon age 9–19 days) (Fig. la, b). The occurrences of peaks and troughs relative to full moon and new moon were attributed to a lunar rhythm of emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson EW (1983) Animals as navigators. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Anonymous (1974) Electro-optics handbook. Technical Ser EOH-11. RCA Corporation, Pennsylvania.

    Google Scholar 

  • Bidlingmayer WL (1964) The effect of moonlight on the flight activity of mosquitoes. Ecology 45L:87–94.

    Article  Google Scholar 

  • Birukow G (1964) Aktivitäts-und Orientierungsrhythmik beim Kornkäfer (Calandra granaria L.). Z Tierpsychol 21:279–301.

    Article  Google Scholar 

  • Bowden J (1964) The relation of activity of two species of Belastomatidae to rainfall and moonlight in Ghana (Hemiptera:Heteroptera). J Entomol Soc South Afr 26:293–301.

    Google Scholar 

  • Bowden J (1973) The significance of moonlight in photoperiodic responses of insects. Bull Entomol Res 62:605–612.

    Article  Google Scholar 

  • Bowden J, Church BM (1973) The influence of moonlight on catches of insects in light-traps in Africa II. The effect of moon phase on light-trap catches. Bull Entomol Res 63:129–142.

    Article  Google Scholar 

  • Bowden J, Morris MG (1975) The influence of moonlight on catches of insects in light-traps in Africa III. The effective radius of a mercury-vapour light trap and the analysis of catches using effective radius. Bull Entomol Res 65:303–348.

    Article  Google Scholar 

  • Brines ML, Gould JL (1979) Bees have rules. Science 206:571–573.

    Article  PubMed  CAS  Google Scholar 

  • Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96: 69–91.

    Google Scholar 

  • Brown ES, Taylor LR (1971) Lunar cycles in the distribution and abundance of airborne insects in the equatorial highlands of East Africa. J Anim Ecol 40:767–779.

    Article  Google Scholar 

  • Brady J (ed) (1982) Biological time keeping. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bünning W (1973) The physiological clock. Orcadian rhythms and biological chronometry, 3rd edn. The English Universities Press, London.

    Google Scholar 

  • Chen HS, Rao CRN (1968) Polarization of light reflection by some natural surfaces. Br J Appl Phys Ser 2 1:1191–1200.

    Google Scholar 

  • Cloudsley-Thompson JL (1980) Biological clocks. Their functions and nature. Weidenfeld and Nicholson, London.

    Google Scholar 

  • Corbet PS (1958) Lunar periodicity of aquatic insects in Lake Victoria. Nature 182:303–331.

    Google Scholar 

  • Corbet PS (1960) Patterns of circadian rhythms in insects. Cold Spring Harbor Symp Quant Biol 25:357–360.

    PubMed  CAS  Google Scholar 

  • Danthanarayana W (1976) Diel and lunar flight periodicities in the light brown apple moth, Epiphyas postvittana (Walker) (Tortricidae) and their possible adaptive significance. Aust J Zool 24:65–73.

    Article  Google Scholar 

  • Detinova TS, Bertram DS (1962) Age-grouping methods in Diptera of medical importance. World Health Organization, Geneva.

    Google Scholar 

  • Dingle H (1972) Migration strategies of insects. Science 175:1327–1335.

    Article  PubMed  CAS  Google Scholar 

  • Drake VA (1985) Radar observations of moths migrating in a nocturnal low-level jet. Ecol Entomol 10:259–265.

    Article  Google Scholar 

  • Duviard D (1974) Flight activity of Belastomatidae in central Ivory Coast. Uecologia (Berl) 15: 321–328.

    Article  Google Scholar 

  • El-Ziady S (1957) A probable effect of the moonlight on the vertical distribution of Diptera. Bull Soc Entomol Egyptd 41:655–662.

    Google Scholar 

  • Enright JT (1972) Jacobs GJ, Belville RE (eds) Animal orientation and navigation. NASA Spec Publ 262:523–555, Wash DC.

    Google Scholar 

  • Geiger R (1966) The climate near the ground. Harvard University Press.

    Google Scholar 

  • Goodwin S, Danthanarayana W (1984) Flight activity of Plutella xylostelh (L.) (Lepidoptera: Yponomeutidae). J Aust Entomol Soc 23:235–240.

    Article  Google Scholar 

  • Greenbank DO, Schaefer GW, Rainey RC (1980) Sprucebudworm (Lepidoptera:Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem Entomol Soc Can no 110.

    Google Scholar 

  • Haddow AJ, Brown KW, Corbet PS, Dirmhirn I, Gillett JD, Jackson THE (1961) Entomological studies from a high tower in Mpanga forest, Uganda I-XII. Trans R Entomol Soc Lond 113: 249–368.

    Google Scholar 

  • Halverson O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge, ein Ultraviolettrezeptor. J Comp Physiol 94:33–47.

    Article  Google Scholar 

  • Hartland-Rowe R (1955) Lunar rhythm in the emergence of an ephemeropteran. Nature 176:657.

    Article  Google Scholar 

  • Hartland-Rowe R (1958) The biology of a tropical mayfly, Povilte adusta Navas with special reference to lunar rhythm. Rev Zool Bot Afr 58:185–202.

    Google Scholar 

  • Hora SL (1927) Lunar periodicity in the reproduction of insects. J Asiatic Soc Bengal 23:339–341.

    Google Scholar 

  • Jander R (1957) Die optische Richtungsorientierung der roten Waldameise (Formica rufa).Z Vgl Physiol 40:162–238.

    Article  Google Scholar 

  • Johnson CG (1950) A suction trap for small airborne insects which automatically segregates the catch into successive hourly samples. Ann App Biol 37:80–91.

    Article  Google Scholar 

  • Johnson CG (1957) The distribution of insects in the air and the empirical relation of density to height. J Anim Ecol 26:479–494.

    Article  Google Scholar 

  • Johnson CG (1960) A basis for a general system of insect migration and dispersal by flight. Nature 186:348–350.

    Article  Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London.

    Google Scholar 

  • Johnson CG, Taylor LR (1955a) The development of large suction traps for airborne insects. Ann App Biol 43:51–61.

    Article  Google Scholar 

  • Johnson CG, Taylor LR (1955b) The measurement of insect density in the air. Lab Pract 4:187–192,235-239.

    Google Scholar 

  • Johnson CG, Taylor LR, Southwood TRE (1962) High altitude migration of Oscinella frit L. (Diptera:Chloropidae). J Anim Ecol 31:373–383.

    Article  Google Scholar 

  • Kennedy JS (1975) Insect dispersal. In: Pimental D (ed) Insects science & society. Academic Press, New York, pp 103–119.

    Google Scholar 

  • Kennedy JS, Booth S, Kershaw WJS (1961) Host finding by aphids in the field III. Visual attraction. Ann Appl Biol 49:1–21.

    Article  Google Scholar 

  • Kerfoot WB (1967) The lunar periodicity of Specodogastra texana, a nocturnal bee (Hymenoptera, Halictidae). Anim Behav 15:479–486.

    Article  PubMed  CAS  Google Scholar 

  • Kopal Z (1960) An introduction to the study of the moon. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Kopal Z (1962) Physics and astronomy of the moon. Academic Press, New York.

    Google Scholar 

  • Kopal Z (1963) The moon: Our nearest celestial neighbour. Chapman and Hall, London.

    Google Scholar 

  • Korringa P (1957) Lunar periodicity. Geol Soc Am Mem 67:917–934.

    Google Scholar 

  • Kovrov BG, Monchadskiy AS (1963) The possibility of using polarized light to attract insects. Entomol Rev 42:25–28.

    Google Scholar 

  • Lewis T, Taylor LR (1967) Introduction to experimental ecology. Academic Press, London.

    Google Scholar 

  • Lieber AL (1978) The lunar effect. Anchor/Doubleday, New York.

    Google Scholar 

  • Lyot B (1929) Reserches sur la polarisation de la lumiere des planetes et de quelques substances terrestres. Ann Obs Paris (Meudon) 8 (Trans: Research on the polarization of light from planets and from some terrestrial substances. TTF-187, Wash DC. National Aeronautics and Space Administration, 1964).

    Google Scholar 

  • MacDonald WW (1956) Observations on the ecology of chaoborids and chironomids in Lake Victoria and on the feeding habits of the elephantsnout fish (Mormyrus kannume Forsk.). J Anim Ecol 25:36–53.

    Article  Google Scholar 

  • Mazokhin-Porshnyakov GA (1969) Insect vision. Plenum, New York.

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Miller TA, Stryker RG, Wilkinson RN, Esah S (1970) The influence of moonlight and other environmental factors on the abundance of certain mosquito species in light-trap collections in Thailand. J Med Entomol 7:755–761.

    Google Scholar 

  • Morton R, Tuart LD, Wardhaugh KG (1981) The analysis and standardisation of light-trap catches of Heliothis armiger (Hubner) and H. punctiger Wallengren (Lepidoptera:Noctuidae). Bull Entomol Res 71:207–222.

    Article  Google Scholar 

  • Nemec SJ (1971) Effects of lunar phases on light-trap collections and populations of bollworm moths. J Econ Entomol 64:860–864.

    Google Scholar 

  • Neumann D (1967) Genetic adaptation in the emergence time of Clunio populations to different tidal conditions. Helgol Wiss Meeresunters 15:163–171.

    Article  Google Scholar 

  • Neumann D (1975) Lunar and tidal rhythms in the development of reproduction of an intertidal organism. In: Vernberg FJ (ed) Physiological adaptation to the environment. Intext, New York.

    Google Scholar 

  • Neumann D (1976) Adaptations of chironomids to intertidal environments. Annu Rev Entomol 21:387–414.

    Article  Google Scholar 

  • Neumann D (1978) Entrainment of a semi-lunar rhythm by simulated tidal cycles of mechanical disturbance. J Exp Ecol 35:73–83.

    Article  Google Scholar 

  • Neumann D (1981) Tidal and lunar rhythms. In: Aschoff JA (ed) Handbook of behavioural neurobiology. Plenum, New York.

    Google Scholar 

  • Nowinszky L, Szobo S, Toth G, Ekk I, Kiss M (1979) The effect of the moon phases and of the intensity of polarized moonlight on the light-trap catches. Z Angew Entomol 88:337–353.

    Article  Google Scholar 

  • Oehmke MG (1973) Lunar periodicity in flight activity of honey bees. J Interdiscip Cycle Res 4: 319–335.

    Article  Google Scholar 

  • Palmer JD (1976) An introduction to biological rhythms. Academic Press, New York.

    Google Scholar 

  • Papi F (1960) Orientation by night: the moon. Cold Spring Harbor Symp Quant Biol 25:475–480.

    PubMed  CAS  Google Scholar 

  • Papi F, Pardi L (1963) On the lunar orientation of sandhoppers (Amphipoda Talitridae). Biol Bull (Woods Hole) 124:97–105.

    Article  Google Scholar 

  • Pellicori SF (1971) Polarizing properties of pulverized materials with special reference to the lunar surface. Appl Optics 10:270–285.

    Article  CAS  Google Scholar 

  • Pratt HD (1948) Influence of the moon on light trap collections of Anopheles albimanus in Puerto Rico. J Nat Malaria Soc 7:212–220.

    PubMed  CAS  Google Scholar 

  • Provost MW (1957) The dispersal of Aedes taeniorhynchus II. The second experiment. Mosq News 17:235–247.

    Google Scholar 

  • Provost MW (1958) Mating and male swarming in Psorophora mosquitoes. Proc Xth Int Congr Entomol 2:553–561.

    Google Scholar 

  • Provost MW (1959) The influence of moonlight on light-trap catches of mosquitoes. Ann Entomol Soc Am 52:261–272.

    Google Scholar 

  • Rainey RC (1976) Flight behaviour and features of the atmospheric environment. In: Rainey RC (ed) Insect flight. Blackwell, Oxford, pp 75–112.

    Google Scholar 

  • Rainey RC (1979) Dispersal and redistribution of some Orthoptera and Lepidoptera. Mitt Bull Soc Entomol Suisse 52:125–132.

    Google Scholar 

  • Riley JR, Reynolds DR (1983) A long-range migration of grasshoppers observed in the Sahelian zone of Mali by two radars. J Anim Ecol 52:167–183.

    Article  Google Scholar 

  • Rounds HD (1981) Semi-lunar eyclicity of neurotransmitter-like substances in the CNS of Periplaneta americana (L.). Comp Biochem Physiol Comp Pharmacol 69:293–299.

    Article  Google Scholar 

  • Rozenberg GV (1966) Twilight. Plenum, New York.

    Google Scholar 

  • Saunders DS (1982) Insect clocks. Pergamon, Oxford.

    Google Scholar 

  • Service M (1976) Mosquito ecology. Applied Science, London.

    Google Scholar 

  • Schaefer GW (1976) Radar observations of insect flight. In: Rainey RC (ed) Insect flight. Blackwell, Oxford, pp 157–197.

    Google Scholar 

  • Sotthibandhu S, Baker RR (1979) Celestial orientation by the large yellow underwing moth, Noctua pronuba L. Anim Behav 27:786–800.

    Article  Google Scholar 

  • Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37: 171–214.

    Article  Google Scholar 

  • Taylor LR (1958) Aphid dispersal and diurnal periodicity. Proc Linn Soc Lond 169:67–73.

    Google Scholar 

  • Taylor LR (1960) The distributions of insects at low levels in the air. J Anim Ecol 29:45–63.

    Article  Google Scholar 

  • Taylor LR (1961) Aggregation, variance and mean. Nature 189:68–77.

    Article  Google Scholar 

  • Taylor LR (1962) The absolute efficiency of suction traps. Ann Appl Biol 50:405–421.

    Article  Google Scholar 

  • Taylor LR (1963) Analysis of the effect of temperature on insects in flight. J Anim Ecol 32: 99–117.

    Article  Google Scholar 

  • Taylor LR (1965) A natural law for the spacial deposition of insects. Proc Xllth Int Congr Entomol 396-397.

    Google Scholar 

  • Taylor LR (1971) Aggregation as a species characteristic. In: Patü GP, Pielou EC, Waters EW (eds) Statistical ecology, vol 1. Pennsylvania State University Press, Pennsylvania.

    Google Scholar 

  • Taylor LR (1974) Insect migration, flight periodicity and the boundary layer. J Anim Ecol 43: 225–238.

    Article  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Watermann TH (1966a) Polarotaxis and primary photoreceptor events in Crustacea. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon, Oxford.

    Google Scholar 

  • Waterman TH (1966b) The specific effects of polarized light in organisms. In: Setman PK, Dittmer DS (eds) Environmental biology. Fed Am Soc Exp Biol, 2nd edn. Bethesda, Maryland.

    Google Scholar 

  • Waterman TH (1974) Polarimeters in animals. In: Gehreis T (ed) Planets, stars and nebulae studied with polarometry. University of Arizona Press, Tuscon, Arizona.

    Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol 7/6B. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Wehner R (1976) Polarized light navigation by insects. Sci Am 235:106–115.

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298.

    Article  Google Scholar 

  • Wehner R, Duelli P (1971) The spacial orientation of desert ants, Cataglyphis biolor. Experientia (Basel) 27:1364–1366.

    Article  Google Scholar 

  • Wellington WG (1974) Changes in mosquito flight associated with natural changes in polarized light. Can Entomol 106:941–948.

    Article  Google Scholar 

  • Wellington WG (1976) Applying behavioural studies in entomological problems. In: Anderson JF, Kaya HK (eds) Perspectives in forest entomology. Academic Press, New York, pp 87–97.

    Google Scholar 

  • Williams CB (1936) The influence of moonlight on the activity of certain nocturnal insects, particularly of the family Noctuidae, as indicated by the light trap. Philos Trans R Soc Lond B Biol Sci 226:357–389.

    Article  Google Scholar 

  • Williams CB (1940) An analysis of four years captures of insects in a light trap II. The effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population. Trans R Entomol Soc Lond 90:227–306.

    Article  Google Scholar 

  • Williams CB, Singh BP (1951) Effect of moonlight on insect activity. Nature 167:853–854.

    Article  PubMed  CAS  Google Scholar 

  • Williams CB, Singh BP, El-Zkdy S (1956) An investigation into the possible effects of moonlight on the activity of insects in the field. Proc R Entomol Soc Lond Ser A Gen Entomol 31:135–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danthanarayana, W. (1986). Lunar Periodicity of Insect Flight and Migration. In: Danthanarayana, W. (eds) Insect Flight. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71155-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71155-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71157-2

  • Online ISBN: 978-3-642-71155-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics