Skip to main content

Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras

  • Conference paper
Algebraic and Algorithmic Aspects of Differential and Integral Operators (AADIOS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8372))

Abstract

The present text surveys some relevant situations and results where basic Module Theory interacts with computational aspects of operator algebras. We tried to keep a balance between constructive and algebraic aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, S.A., Le, H.Q., Li, Z.: Oretools: A computer algebra library for univariate Ore polynomial rings. Technical report, Technical Report CS-2003-12. University of Waterloo (2003)

    Google Scholar 

  2. Adams, W., Loustaunau, P.: An introduction to Gröbner Bases. AMS, Providence (1994)

    MATH  Google Scholar 

  3. Anderson, F.W., Fuller, K.R.: Rings and categories of modules, 2nd edn. Springer, New York (1992)

    Book  MATH  Google Scholar 

  4. Andres, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönemann, H.: Constructive D-Module Theory with SINGULAR. Math. Comput. Sci. 4(2-3), 359–383 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Apel, J.: A relationship between Gröbner bases of ideals and vector modules of G-algebras. Contemporary Mathematics 21(pt-2, 195–204 (1992)

    Google Scholar 

  6. Apel, J., Klaus, U.: FELIX, a special computer algebra system for the computation in commutative and non-commutative rings and modules (1998), http://felix.hgb-leipzig.de/

  7. Apel, J., Lassner, W.: An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras. J. Symbolic Comput. 6, 361–370 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Apel, J., Melenk, H.: REDUCE package NCPOLY: Computation in non-commutative polynomial ideals, Konrad-Zuse-Zentrum Berlin, ZIB (1994) (preprint)

    Google Scholar 

  9. Barakat, M., Robertz, D.: Homalg: A meta-package for homological algebra. J. Algebra Appl. 7, 299–317 (2008), http://homalg.math.rwth-aachen.de

    Article  MATH  MathSciNet  Google Scholar 

  10. Barkatou, M.: A Rational solutions of matrix difference equation. problem of equivalence and factorisation. In: Proceedings of ISSAC 1999, pp. 277–282. ACM Press (1999)

    Google Scholar 

  11. Barkatou, M.A.: Factoring systems of linear functional equations using eigenrings. Latest Advances in Symbolic Algorithms. In: Kotsireas, I., Zima, E. (eds.) Proc. of the Waterloo Workshop, pp. 22–42. World Scientific, Ontario (2007)

    Google Scholar 

  12. Barkatou, M.A., Cluzeau, T., El Bacha, C., Weil, J.-A.: Computing closed form solutions of integrable connections. In: Proceedings of the International Symposium on Symbolic and Algebraic Computations (ISSAC 2012), pp. 43–50. ACM Press (2012), http://www.ensil.unilim.fr/~cluzeau/PDS.html

  13. Barkatou, P.A., Pflügel, E.: On the Equivalence Problem of Linear Differential Systems and its Application for Factoring Completely Reducible Systems. In: Proceedings of ISSAC 1998, pp. 268–275. ACM Press (1998)

    Google Scholar 

  14. Barkatou, M.A., Pflügel, E.: The ISOLDE package. A SourceForge Open Source project (2006), http://isolde.sourceforge.net

  15. Becker, T., Weispfenning, V.: Gröbner bases. A computational approach to commutative algebra. Springer (1993)

    Google Scholar 

  16. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of Ore polynomials. J. Symbolic Comput. 41, 513–543 (2006), http://www.cs.uleth.ca/~cheng/software/

    Article  MATH  MathSciNet  Google Scholar 

  17. Bergman, G.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  18. Björk, J.E.: Rings of differential operators, Mathematical Library, 21. North-Holland, Amsterdam (1979)

    Google Scholar 

  19. Björk, J.-E.: The Auslander condition on Noetherian rings. In: Malliavin, M.-P. (ed.) Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988). Lecture Notes in Math., vol. 1404, pp. 137–173. Springer, New York (1989)

    Chapter  Google Scholar 

  20. Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package “Janet”: II. Linear Partial Differential Equations. In: Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, pp. 41–54 (2003), http://wwwb.math.rwth-aachen.de/Janet

  21. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157, 3–33 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bueso, J.L., Castro, F.J., Gómez-Torrecillas, J., Lobillo, F.J.: An introduction to effective calculus in quantum groups. In: Caenepeel, S., Verschoren, A. (eds.) Hopf algebras and Brauer groups, pp. 55–83. Marcel Dekker (1998)

    Google Scholar 

  23. Bueso, J.L., Castro, F.J., Gómez-Torrecillas, J., Lobillo, F.J.: Primality Test in iterated Ore extensions. Comm. Algebra 29, 1357–1371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bueso, J.L., Castro, F.J., Jara, P.: The effective computation of the Gelfand-Kirillov dimension. Proc. Edinburgh Math. Soc. 40, 111–117 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J.: Homological Computations in PBW Modules. Alg. Repr. Theory 4, 201–218 (2001)

    Article  MATH  Google Scholar 

  26. Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J.: Computing the Gelfand-Kirillov dimension, II. In: Granja, A., Hermida, J.A., Verschoren, A. (eds.) Ring Theory and Algebraic Geometry, pp. 33–57. Marcel Dekker, New York (2001)

    Google Scholar 

  27. Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J.: Re-filtering and exactness of the Gelfand-Kirillov dimension. Bull. Sci. Math. 125, 689–715 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bueso, J.L., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic methods in Non-Commutative Algebra. Applications to quantum groups. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  29. Caruso, X., Le Borgne, J.: Some algorithms for skew polynomials over finite fields, http://arxiv.org/abs/1212.3582

  30. Castro, F.J.: Théorème de division pour les opérateurs différentielles et calcul des multiplicités. Thèse 3eme cycle, Univ. Paris VII (1984)

    Google Scholar 

  31. Cha, Y.: Packages tausqsols, solver, Hom (2012), https://sites.google.com/site/yongjaecha/code

  32. Churchill, R.C., Kovacic, J.J.: Cyclic vectors. In: Proceedings of Differential Algebra and Related Topics, Newark, NJ, pp. 191–218. World Sci. Publ., River Edge (2002)

    Chapter  Google Scholar 

  33. Chyzak, F., Quadrat, D., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Comm. Comput. 16, 319–376 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Chyzak, F., Quadrat, A., Robertz, D.: OreModules: A symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.J. (eds.) Appl. of Time Delay Systems. LNCIS, vol. 352, pp. 233–264. Springer, Heidelberg (2007), http://wwwb.math.rwth-aachen.de/OreModules

  35. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26, 187–227 (1998), http://algo.inria.fr/chyzak/mgfun.html

    Article  MATH  MathSciNet  Google Scholar 

  36. Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428, 324–381 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Cluzeau, T., Quadrat, A.: OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems. In: Loiseau, J.J., Michiels, W., Niculescu, S.-I., Sipahi, R. (eds.) Topics in Time Delay Systems. LNCIS, vol. 388, pp. 179–194. Springer, Heidelberg (2009)

    Google Scholar 

  38. Cohn, P.M.: Free rings and their relations. Academic Press, London (1971)

    Google Scholar 

  39. Davies, P., Cheng, H., Labahn, G.: Computing Popov form of general Ore polynomial matrices. In: Proceedings of the Milestones in Computer Algebra (MICA) Conference, pp. 149–156 (2008), http://www.cs.uleth.ca/~cheng/software/

  40. Dixmier, J.: Enveloping algebras. North-Holland, Amsterdam (1977)

    Google Scholar 

  41. Foldenauer, A.C.: Gröbner Bases for Bimodules and its Applications: Jacobson normal form in centerless Ore extensions and Gröbner Basis theory for Bimodules in G-algebras. Diploma thesis, Univ. Aachen (2012)

    Google Scholar 

  42. Galligo, A.: Algorithmes de calcul de base standards (1983) (preprint)

    Google Scholar 

  43. Gerdt, V.P., Robertz, D.: A Maple package for computing Gröbner bases for linear recurrence relations. Nuclear Instruments and Methods in Physics Research Section A 559, 215–219 (2006), http://arxiv.org/abs/cs/0509070

    Article  Google Scholar 

  44. Giesbrecht, M.: Factoring in skew-polynomial rings over finite fields. J. Symbolic Comput. 26, 463–486 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. Giesbrecht, M., Heinle, A.: A polynomial-time algorithm for the Jacobson form of a matrix of Ore polynomials. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 117–128. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  46. Giesbrecht, M., Zhang, Y.: Factoring and Decomposing Ore Polynomials over \(\mathbb{F}_q(t)\). In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation (ISSAC 2003), pp. 127–134. ACM Press (2003)

    Google Scholar 

  47. Gluesing-Luerssen, H., Schmale, W.: On cyclic convolutional codes. Acta Appl. Math. 82, 183–237 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Gómez-Torrecillas, J.: Gelfand-Kirillov dimension of multi-filtered algebras. Proc. Edinburgh Math. Soc. 52, 155–168 (1999)

    Article  Google Scholar 

  49. Gómez-Torrecillas, J.: Regularidad de las álgebras envolventes cuantizadas. Actas del Encuentro de Matemáticos Andaluces 2, 493–500 (2001)

    Google Scholar 

  50. Gómez-Torrecillas, J., Lenagan, T.H.: Poincaré series of multi-filtered algebras and partitivity. J. London Math. Soc. 62, 370–380 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  51. Gómez-Torrecillas, J., Lobillo, F.J.: Auslander-Regular and Cohen-Macaulay Quantum Groups. Algebras Repr. Theory 7, 35–42 (2004)

    Article  MATH  Google Scholar 

  52. Gómez-Torrecillas, J., Lobillo, F.J., Navarro, G.: Computing the bound of an Ore polynomial. Applications to Factorization, http://arxiv.org/abs/1307.5529

  53. Grayson, D., Stillman, M.: Macaulay 2, A software system for research in algebraic geometry (2013), http://www.math.uiuc.edu/Macaulay2

  54. Greuel, G.-M., Levandovskyy, V., Motsak, O., Schönemann, H.: Plural. A Singular 3.1 subsystem for computations with non-commutative polynomial algebras. Centre for Computer Algebra, TU Kaiserslautern (2010), http://www.singular.uni-kl.de

  55. Greuel, G.-M., Motsak, O., Schönemann, H.: Singular: SCA. A Singular 3.1 subsystem for computations with graded commutative algebras (2011), http://www.singular.uni-kl.de

  56. Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equations. Computing 73, 179–197 (2004), http://www.alltypes.de/

    MATH  MathSciNet  Google Scholar 

  57. Hazewinkel, M., Gubareni, N., Kirichenko, V.V.: Algebras, Rings and Modules, vol. 1. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  58. Heinle, A., Levandovskyy, V.: ncfactor.lib. A Singular 3.1 a library for factorization in some non-commutative algebras (2013), http://www.singular.uni-kl.de

  59. Hilton, P.J., Stammbach, U.: A course in Homological Algebra. Springer, New York (1971)

    Book  MATH  Google Scholar 

  60. Jacobson, N.: The Theory of Rings. AMS, Providence (1943)

    Book  MATH  Google Scholar 

  61. Jacobson, N.: Basic Algebra. II. W. H. Freeman and Co., San Francisco (1980)

    MATH  Google Scholar 

  62. Jacobson, N.: Finite-Dimensional Division Algebras over Fields. Springer, New York (1996)

    Book  MATH  Google Scholar 

  63. Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comp. 6, 231–248 (1990)

    MathSciNet  Google Scholar 

  64. Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage (2013), http://arxiv.org/abs/1306.4263

  65. Koutschan, C.: HolonomicFunctions (user’s guide). Technical report, Technical report no. 10-01 in RISC Report Series, University of Linz, Austria (2010), http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html

  66. Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension, Revised edn. A.M.S, Rhode Island (2000)

    Google Scholar 

  67. Kredel, H.: Solvable Polynomial Rings. Verlag Shaker, Aachen (1993)

    Google Scholar 

  68. Kredel, H., Pesch, M.: MAS, modula-2 algebra system (1998), http://krum.rz.uni-mannheim.de/mas.html

  69. Lassner, W.: An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras. In: Proc. EUROCAL 1985, Linz 1985. LNCS, vol. 204, pp. 99–115 (1985)

    Google Scholar 

  70. Lejeune-Jalabert, M.: Effectivité des calculs polynomiaux, Cours de D.E.A., Univ. Grénoble (1984–1985)

    Google Scholar 

  71. Leroy, A.: Pseudo linear transformations and evaluation in Ore extensions. Bull. Belg. Math. Soc. 2, 321–347 (1995)

    MATH  MathSciNet  Google Scholar 

  72. Levandovskyy, V.: Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Ph. D. Thesis, Univ. Kaiserslautern (2005), http://kluedo.ub.uni-kl.de/volltexte/2005/1883/

  73. Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and future. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 144–157. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  74. Levandovskyy, V., Schindelar, K.: Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gröbner bases. J. Symbolic Comput. 47, 1214–1232 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  75. Levandovskyy, V., Schönemann, H.: PLURAL — a computer algebra system for noncommutative polynomial algebras. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 176–183. ACM, New York (2003)

    Chapter  Google Scholar 

  76. Lezama, O., Gallego, C.: Gröbner bases for ideals of sigma-PBW extensions. Comm. Algebra 39, 50–75 (2011)

    MATH  MathSciNet  Google Scholar 

  77. Lezama, O., Reyes, A.: Some homological properties of skew PBW extensions, http://arxiv.org/abs/1310.6639

  78. Lobillo, F.J.: Métodos Algebraicos y Efectivos en Grupos Cuánticos, Tesis doctoral, Universidad de Granada (1998)

    Google Scholar 

  79. Lorenz, M.: Gelfand-Kirillov dimension and Poincaré series, Cuadernos de Álgebra 7, Universidad de Granada (1988)

    Google Scholar 

  80. McConnell, J.C., Robson, J.C.: Noncommutative noetherian ring. Wiley Interscience, New York (1988)

    Google Scholar 

  81. McConnell, J.C., Stafford, J.: Gelfand-Kirillov dimension and associated graded modules. J. Algebra 125, 197–214 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  82. Mora, T.: An introduction to commutative and non-commutative Gröbner bases. Theoret. Comput. Sci. 134, 131–173 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  83. Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symbolic Comput. 6, 183–208 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  84. Noro, M., Shimoyama, T., Takeshima, T.: Risa/Asir, an open source general computer algebra system (2012), http://www.math.kobe-u.ac.jp/Asir

  85. Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)

    Article  MATH  MathSciNet  Google Scholar 

  86. Quadrat, A.: Grade Filtration of Linear Functional Systems. Acta Appl. Math. 127, 27–86 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  87. Robbiano, L.: On the theory of graded structures. J. Symbolic Comput. 2, 139–186 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  88. Robertz, D.: Janet Bases and Applications. In: Rosenkranz, M., Wang, D. (eds.) Gröbner Bases in Symbolic Analysis, pp. 139–168. de Gruyter, Berlin (2007), http://wwwb.math.rwth-aachen.de/Janet/janetore.html

    Google Scholar 

  89. Rónyai, L.: Simple algebras are difficult. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 398–408. ACM (1987)

    Google Scholar 

  90. Saito, M., Sturmfels, B., Takayama, N.: Gröbner deformations of hypergeometric differential equations. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  91. Schindelar, K., Levandovskyy, V.: A Singular 3.1 library with algorithms for Smith and Jacobson normal forms jacobson.lib. (2009), http://www.singular.uni-kl.de

  92. Schreyer, F.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrachen Divisionsatz, Diplomatbeit. Universität Hamburg (1980)

    Google Scholar 

  93. Singer, M.F.: Testing reducibility of linear differential operators: A group theoretic perspective. Appl. Algebra Eng. Commun. Comput. 7, 77–104 (1996)

    Article  MATH  Google Scholar 

  94. Strenström, B.: Rings of Quotients. Springer, Berlin (1975)

    Book  Google Scholar 

  95. Takayama, N.: kan/sm1, a Gröbner engine for the ring of differential and difference operators (2003), http://www.math.kobe-u.ac.jp/KAN/index.html

  96. Tsai, H., Leykin, A.: D-modules package for Macaulay 2 – algorithms for D–modules (2006), http://people.math.gatech.edu/~aleykin3/Dmodules/

  97. Van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Springer, New York (2003)

    Book  MATH  Google Scholar 

  98. Van Hoeij, M.: Factorization of Differential Operators with Rational Functions Coefficients. J. Symbolic Comput. 24, 537–561 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  99. Weispfenning, V.: Constructing universal Gröbner bases. In: Huguet, L., Poli, A. (eds.) Proceedings of AAECC 5. LNCS, vol. 356, pp. 408–417. Springer, Heidelberg (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez-Torrecillas, J. (2014). Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds) Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, vol 8372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54479-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54479-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54478-1

  • Online ISBN: 978-3-642-54479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics