Skip to main content

Aromaticity of Organic and Inorganic Heterocycles

  • Chapter
  • First Online:
Structure, Bonding and Reactivity of Heterocyclic Compounds

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 38))

Abstract

Heteroaromatic rings are present in many organic molecules. They can be found as part of the core of drugs or agrochemicals and in many important biochemical molecules. The last three centuries have brought important advances in heteroaromatic chemistry. Indeed, the first organic molecules with heteroaromatic rings were already synthesized in the middle of the nineteenth century. Then, the twentieth century witnessed the first inorganic heteroaromatic compound produced in the laboratory. And at the beginning of the present century, the first all-metal heteroaromatic cluster was detected. Here, we discuss the aromaticity of some of these heteroaromatic compounds using different descriptors of aromaticity, with special emphasis in those measures based on electron delocalization properties of the aromatic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofmann AW (1856) Proc R Soc Lond 8:1–3

    Article  Google Scholar 

  2. Kekulé A (1865) Bull Soc Chim Fr (Paris) 3:98–110

    Google Scholar 

  3. Anderson T (1868) Trans R Soc Edinb 25:205–216

    Article  Google Scholar 

  4. Balaban AT, Oniciu DC, Katritzky AR (2004) Chem Rev 104:2777–2812

    Article  CAS  Google Scholar 

  5. Stock A, Pohland E (1926) Ber. Dtsch. Chem. Ges. (A and B Series) 59:2215–2223

    Article  Google Scholar 

  6. Marwitz AJV, Matus MH, Zakharov LN, Dixon DA, Liu S-Y (2009) Angew Chem Int Ed 48:973–977

    Article  CAS  Google Scholar 

  7. Elliott GP, Roper WR, Waters JM (1982) J Chem Soc Chem Commun 1982:811–813

    Article  Google Scholar 

  8. Li X, Kuznetsov AE, Zhang H-F, Boldyrev A, Wang L-S (2001) Science 291:859–861

    Article  CAS  Google Scholar 

  9. Boldyrev AI, Wang L-S (2005) Chem Rev 105:3716–3757

    Article  CAS  Google Scholar 

  10. Tsipis CA (2005) Coord Chem Rev 249:2740–2762

    Article  CAS  Google Scholar 

  11. Zubarev DY, Averkiev BB, Zhai H-J, Wang L-S, Boldyrev AI (2008) Phys Chem Chem Phys 10:257–267

    Article  CAS  Google Scholar 

  12. Feixas F, Matito E, Poater J, Solà M (2013) WIREs Comput Mol Sci 3:105–122

    Article  CAS  Google Scholar 

  13. Li X, Zhang H-F, Wang L-S, Kuznetsov AE, Cannon NA, Boldyrev AI (2001) Angew Chem Int Ed 40:1867–1870

    Article  CAS  Google Scholar 

  14. Huang X, Zhai H-J, Kiran B, Wang L-S (2005) Angew Chem Int Ed 44:7251–7254

    Article  CAS  Google Scholar 

  15. Zhai H-J, Averkiev BB, Zubarev DY, Wang L-S, Boldyrev AI (2007) Angew Chem Int Ed 46:4277–4280

    Article  CAS  Google Scholar 

  16. Ugrinov A, Sen A, Reber AC, Qian M, Khanna SN (2008) J Am Chem Soc 130:782–783

    Article  CAS  Google Scholar 

  17. Tsipis AC, Kefalidis CE, Tsipis CA (2008) J Am Chem Soc 130:9144–9155

    Article  CAS  Google Scholar 

  18. Li X, Wang L-S, Boldyrev AI, Simons J (1999) J Am Chem Soc 121:6033–6038

    Article  CAS  Google Scholar 

  19. Castro AC, Audiffred M, Mercero JM, Ugalde JM, Méndez-Rojas MA, Merino G (2012) Chem Phys Lett 519–520:29–33

    Article  Google Scholar 

  20. Katritzky AR, Jug K, Oniciu DC (2001) Chem Rev 101:1421–1449

    Article  CAS  Google Scholar 

  21. Cyrański MK (2005) Chem Rev 105:3773–3811

    Article  Google Scholar 

  22. Matito E, Duran M, Solà M (2005) J Chem Phys 122:014109

    Article  Google Scholar 

  23. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  24. Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:400–406

    Article  CAS  Google Scholar 

  25. Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Phys Chem Chem Phys 2:3381–3392

    Article  CAS  Google Scholar 

  26. Giambiagi M, de Giambiagi MS, Mundim KC (1990) Struct Chem 1:423–427

    Article  CAS  Google Scholar 

  27. Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  28. Boldyrev AI, Kuznetsov AE (2002) Inorg Chem 41:532–537

    Article  CAS  Google Scholar 

  29. Feixas F, Jiménez-Halla JOC, Matito E, Poater J, Solà M (2010) J Chem Theory Comput 6:1118–1130

    Article  CAS  Google Scholar 

  30. Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, S. Dapprich, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian 09, Revision A.02 edn. Gaussian, Pittsburgh

    Google Scholar 

  32. Baerends EJ, Autschbach J, Bérces A, Bickelhaupt FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, van Kessel G, Kootstra F, van Lenthe E, McCormack DA, Michalak A, Neugebauer J, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Ros P, Schipper PRT, Schreckenbach G, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, Ziegler T (2007) ADF2007.01. SCM, Amsterdam

    Google Scholar 

  33. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  34. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  35. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  36. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  37. Salvador P, Ramos-Cordoba E (2011) APOST-3D. Institut de Química Computacional i Catàlisi. University of Girona, Girona

    Google Scholar 

  38. Mayer I, Salvador P (2004) Chem Phys Lett 383:368–375

    Article  CAS  Google Scholar 

  39. Matito E (2006) ESI-3D: Electron Sharing Indices Program for 3D molecular space partition. Institut de Química Computacional i Catàlisi, University of Girona, Girona

    Google Scholar 

  40. Matito E, Solà M, Salvador P, Duran M (2007) Faraday Discuss 135:325–345

    Article  CAS  Google Scholar 

  41. Morokuma K (1977) Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  42. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  43. Ziegler T, Rauk A (1979) Inorg Chem 18:1558–1565

    Article  CAS  Google Scholar 

  44. Mandado M, Otero N, Mosquera RA (2007) Tetrahedron 62:12204–12210

    Article  Google Scholar 

  45. Cioslowski J, Matito E, Solà M (2007) J Phys Chem A 111:6521–6525

    Article  CAS  Google Scholar 

  46. Cyrański MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) J Org Chem 67:1333–1338

    Article  Google Scholar 

  47. Alonso M, Herradón B (2010) J Comput Chem 31:917–928

    CAS  Google Scholar 

  48. Curutchet C, Poater J, Solà M, Elguero J (2011) J Phys Chem A 115:8571–8577

    Article  CAS  Google Scholar 

  49. Wang Y, Wu JI-C, Li Q, Schleyer PR (2010) Org Lett 12:4824–4827

    Article  CAS  Google Scholar 

  50. Feixas F, Matito E, Poater J, Solà M (2007) J Phys Chem A 111:4513–4521

    Article  CAS  Google Scholar 

  51. Krygowski TM, Ejsmont K, Stepien BT, Cyranski MK, Poater J, Solà M (2004) J Org Chem 69:6634–6640

    Article  CAS  Google Scholar 

  52. Alonso M, Herradón B (2010) Phys Chem Chem Phys 12:1305–1317

    Article  CAS  Google Scholar 

  53. Fernández I, Dyker CA, DeHope A, Donnadieu B, Frenking G, Bertrand G (2009) J Am Chem Soc 131:11875–11881

    Article  Google Scholar 

  54. Poater J, Visser R, Solà M, Bickelhaupt FM (2007) J Org Chem 72:1134–1142

    Article  CAS  Google Scholar 

  55. El-Hamdi M, Tiznado W, Poater J, Solà M (2011) J Org Chem 76:8913–8921

    Article  CAS  Google Scholar 

  56. Bird CW (1996) Tetrahedron 52:9945–9952

    Article  CAS  Google Scholar 

  57. Bird CW (1997) Tetrahedron 53:13111–13118

    Article  CAS  Google Scholar 

  58. Poater J, Sodupe M, Bertran J, Solà M (2005) Mol Phys 103:163–173

    Article  CAS  Google Scholar 

  59. Cyrański MK, Gilski M, Jaskolski M, Krygowski TM (2003) J Org Chem 68:8607–8613

    Article  Google Scholar 

  60. Huertas O, Poater J, Fuentes-Cabrera M, Orozco M, Solà M, Luque FJ (2006) J Phys Chem A 110:12249–12258

    Article  CAS  Google Scholar 

  61. Hückel E (1937) Z Elektrochemie 43:752–788, 827–849

    Google Scholar 

  62. Noguera M, Bertran J, Sodupe M (2003) J Phys Chem A 108:333–341

    Article  Google Scholar 

  63. Poater J, García-Cruz I, Illas F, Solà M (2004) Phys Chem Chem Phys 6:314–318

    Article  CAS  Google Scholar 

  64. Spaulding LD, Chang CC, Yu N-T, Felton RH (1975) J Am Chem Soc 97:2517–2525

    Article  CAS  Google Scholar 

  65. Fuhrhop J-H, Kadish KM, Davis DG (1973) J Am Chem Soc 95:5140–5147

    Article  CAS  Google Scholar 

  66. Irikura KK, Beauchamp JL (1991) J Am Chem Soc 113:2767–2768

    Article  CAS  Google Scholar 

  67. Jones DH, Hinman AS, Ziegler T (1993) Inorg Chem 32:2092–2095

    Article  CAS  Google Scholar 

  68. Scheidt WR, Reed CA (1981) Chem Rev 81:543–555

    Article  CAS  Google Scholar 

  69. Feixas F, Swart M, Solà M (2009) Can J Chem 87:1063–1073

    Article  CAS  Google Scholar 

  70. Bonomo L, Lehaire M-L, Solari E, Scopelliti R, Floriani C (2001) Angew Chem Int Ed 40:771–774

    Article  CAS  Google Scholar 

  71. Feixas F, Matito E, Solà M, Poater J (2010) Phys Chem Chem Phys 12:7126–7137

    Article  CAS  Google Scholar 

  72. Swart M (2008) J Chem Theory Comput 4:2057–2066

    Article  CAS  Google Scholar 

  73. Cyrański MK, Krygowski TM, Wisiorowski M, Van Eikema Hommes NJR (1998) Schleyer PvR. Angew Chem Int Ed 37:177–180

    Article  Google Scholar 

  74. Jusélius J, Sundholm D (2000) Phys Chem Chem Phys 2:2145–2151

    Article  Google Scholar 

  75. Steiner E, Fowler P (2002) ChemPhysChem 3:114–116

    Article  CAS  Google Scholar 

  76. Steiner E, Soncini A, Fowler P (2005) Org Biomol Chem 3:4053–4059

    Article  CAS  Google Scholar 

  77. Fliegl H, Sundholm D, Taubert S, Pichierri F (2010) J Phys Chem A 114:7153–7161

    Article  CAS  Google Scholar 

  78. Alonso M, Geerlings P, de Proft F (2012) Chem Eur J 18:10916–10928

    Article  CAS  Google Scholar 

  79. Islas R, Poater J, Matito E, Solà M (2012) Phys Chem Chem Phys 14:14850–14859

    Article  CAS  Google Scholar 

  80. Foroutan-Nejad C, Shahbazian S, Feixas F, Rashidi-Ranjbar P, Solà M (2011) J Comput Chem 32:2422–2431

    Article  CAS  Google Scholar 

  81. De Proft F, Fowler PW, Havenith RWA, Schleyer PR, van Lier G, Geerlings P (2004) Chem Eur J 10:940–950

    Article  Google Scholar 

  82. Kraus F, Korber N (2005) Chem Eur J 11:5945–5959

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The following organizations are thanked for financial support: the Ministerio de Ciencia e Innovación (MICINN, project numbers CTQ2011-23156/BQU and CTQ2011-25086/BQU), the Generalitat de Catalunya (project numbers 2009SGR637 and 2014SGR931 and Xarxa de Referència en Química Teòrica i Computacional), and the FEDER fund (European Fund for Regional Development) for the grant UNGI08-4E-003. Excellent service by the Centre de Serveis Científics i Acadèmics de Catalunya (CESCA) is gratefully acknowledged. Support for the research of M. Solà was received through the ICREA Academia 2009 prize for excellence in research funded by the DIUE of the Generalitat de Catalunya. E.M. acknowledges financial support of the EU under the Marie Curie Career Integration grant (PCI09-GA-2011-294240) and the Beatriu de Pinós program from AGAUR for the postdoctoral grant (BP_B_00236). F.F acknowledges financial support from AGAUR for the Beatriu de Pinós postdoctoral Grant (BP_A_00339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Solà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feixas, F., Poater, J., Matito, E., Solà, M. (2014). Aromaticity of Organic and Inorganic Heterocycles. In: De Proft, F., Geerlings, P. (eds) Structure, Bonding and Reactivity of Heterocyclic Compounds. Topics in Heterocyclic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45149-2_5

Download citation

Publish with us

Policies and ethics