Skip to main content

Braess’s Paradox in Wireless Networks: The Danger of Improved Technology

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

  • 1596 Accesses

Abstract

When comparing new wireless technologies, it is common to consider the effect that they have on the capacity of the network (defined as the maximum number of simultaneously satisfiable links). For example, it has been shown that giving receivers the ability to do interference cancellation, or allowing transmitters to use power control, never decreases the capacity and can in certain cases increase it by \(\Omega(\log (\varDelta \cdot P_{\max}))\), where \(\varDelta\) is the ratio of the longest link length to the smallest transmitter-receiver distance and P max is the maximum transmission power. But there is no reason to expect the optimal capacity to be realized in practice, particularly since maximizing the capacity is known to be NP-hard. In reality, we would expect links to behave as self-interested agents, and thus when introducing a new technology it makes more sense to compare the values reached at game-theoretic equilibria than the optimum values.

In this paper we initiate this line of work by comparing various notions of equilibria (particularly Nash equilibria and no-regret behavior) when using a supposedly “better” technology. We show a version of Braess’s Paradox for all of them: in certain networks, upgrading technology can actually make the equilibria worse, despite an increase in the capacity. We construct instances where this decrease is a constant factor for power control, interference cancellation, and improvements in the SINR threshold (β), and is \(\Omega(\log \varDelta)\) when power control is combined with interference cancellation. However, we show that these examples are basically tight: the decrease is at most O(1) for power control, interference cancellation, and improved β, and is at most \(O(\log \varDelta)\) when power control is combined with interference cancellation.

A full version of this paper, including all proofs, can be found at http://arxiv.org/abs/1308.0173

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J.G.: Interference cancellation for cellular systems: a contemporary overview. IEEE Wireless Communications 12, 19–29 (2005)

    Article  Google Scholar 

  2. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: Complexity and game theory. In: Proc. 28th Conf. of IEEE Computer and Communications Societies, INFOCOM (2009)

    Google Scholar 

  3. Ásgeirsson, E.I., Mitra, P.: On a game theoretic approach to capacity maximization in wireless networks. In: INFOCOM (2011)

    Google Scholar 

  4. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2003)

    Article  MathSciNet  Google Scholar 

  5. Avin, C., Cohen, A., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D.: Sinr diagram with interference cancellation. In: SODA, pp. 502–515 (2012)

    Google Scholar 

  6. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams: Towards algorithmically usable sinr models of wireless networks. In: Proc. 28th Symp. on Principles of Distributed Computing, PODC (2009)

    Google Scholar 

  7. Avin, C., Lotker, Z., Pignolet, Y.-A.: On the power of uniform power: Capacity of wireless networks with bounded resources. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 373–384. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price of total anarchy. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 373–382. ACM, New York (2008)

    Google Scholar 

  9. Braess, D.: über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12(1), 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  10. Costa, M.H.M., El Gamal, A.A.: The capacity region of the discrete memoryless interference channel with strong interference. IEEE Trans. Inf. Theor. 33(5), 710–711 (1987)

    Article  MATH  Google Scholar 

  11. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 71–78. ACM, New York (2006)

    Chapter  Google Scholar 

  12. Dinitz, M.: Distributed algorithms for approximating wireless network capacity. In: INFOCOM, pp. 1397–1405 (2010)

    Google Scholar 

  13. Etkin, R.H., Tse, D.N.C., Wang, H.: Gaussian interference channel capacity to within one bit. IEEE Trans. Inf. Theor. 54(12), 5534–5562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR. In: Proc. 8th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 100–109 (2007)

    Google Scholar 

  15. Goussevskaia, O., Wattenhofer, R., Halldórsson, M.M., Welzl, E.: Capacity of arbitrary wireless networks. In: INFOCOM, pp. 1872–1880 (2009)

    Google Scholar 

  16. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Information Theory 46(2), 388–404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: SODA, pp. 516–526 (2012)

    Google Scholar 

  18. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communication. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 383–392. ACM (2011)

    Google Scholar 

  20. Kesselheim, T.: A constant-factor approximation for wireless capacity maximization with power control in the sinr model. In: Proc. ACM-SIAM Symp. on Discrete Algorithms, SODA 2011 (2011)

    Google Scholar 

  21. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. Distributed Computing (2010)

    Google Scholar 

  22. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: Proc. 25th Conf. of IEEE Computer and Communications Societies, INFOCOM (2006)

    Google Scholar 

  25. Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dinitz, M., Parter, M. (2013). Braess’s Paradox in Wireless Networks: The Danger of Improved Technology. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics