Skip to main content

Institution-Based Semantics for MOF and QVT-Relations

  • Conference paper
Formal Methods: Foundations and Applications (SBMF 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8195))

Included in the following conference series:

Abstract

To cope with formal verification issues within the Model-Driven Engineering (MDE) paradigm, a separation of duties between software developers is usually proposed: MDE experts define models and transformations, while formal verification experts conduct the verification process. This is often aided by (semi)automatic translations form the MDE elements to their formal representation in the semantic domain used for verification. From a formal perspective, this requires semantic-preserving translations between the MDE elements and the semantic domain. The aim of this paper is to present formal semantics for the MOF and QVT-Relations languages which are standard languages for defining metamodels and model transformations, respectively. The semantics is based on the Theory of Institutions and reflect the conformance relation between models and metamodels, and the satisfaction of transformation rules between pairs of models. The theory assists in the definition of semantic-preserving translations between our institutions and other logics which will be used for verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification. Specification Version 2.0 (2003)

    Google Scholar 

  3. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final Adopted Specification Version 1.1 (2009)

    Google Scholar 

  4. Kurtev, I., Bezivin, J., Aksit, M.: Technological spaces: An initial appraisal. In: Intl. Symposium on Distributed Objects and Applications (2002)

    Google Scholar 

  5. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Tech. Rep., Universitaet Bremen, Habilitation thesis (2005)

    Google Scholar 

  7. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Programming. J. ACM 39(1), 95–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Object Management Group: Object Constraint Language. Formal Specification Version 2.2 (2010)

    Google Scholar 

  9. Calegari, D., Szasz, N.: Bridging techological spaces for the verification of model transformations. In: Conf. Iberoamericana de Software Engineering, Uruguay (2013)

    Google Scholar 

  10. Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13, 274–307 (2002)

    Article  MATH  Google Scholar 

  11. Mossakowski, T., Haxthausen, A.E., Sannella, D., Tarlecki, A.: Casl - the common algebraic specification language: Semantics and proof theory. Computers and Artificial Intelligence 22, 285–321 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Cengarle, M.V., Knapp, A.: An institution for UML 2.0 static structures. Tech. Rep. TUM-I0807, Institut für Informatik, Technische Universität München (2008)

    Google Scholar 

  13. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain specific languages – A craftsman’s approach for the railway domain using casl. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Springer (2012)

    Google Scholar 

  15. Beckert, B., Keller, U., Schmitt, P.: Translating the Object Constraint Language into first-order predicate logic. In: VERIFY Workshop, Denmark (2002)

    Google Scholar 

  16. Shan, L., Zhu, H.: Semantics of metamodels in UML. In: 3rd IEEE Symposium on Theoretical Aspects of Software Engineering, pp. 55–62. IEEE Computer Society (2009)

    Google Scholar 

  17. Rivera, J., Durán, F., Vallecillo, A.: Formal specification and analysis of domain specific models using Maude. Simulation 85(11-12), 778–792 (2009)

    Article  Google Scholar 

  18. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-modeling language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 71–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Orejas, F., Wirsing, M.: On the specification and verification of model transformations. In: Palsberg, J. (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700, pp. 140–161. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Bidoit, M., Hennicker, R., Tort, F., Wirsing, M.: Correct realizations of interface constraints with OCL. In: France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 399–415. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Boronat, A., Heckel, R., Meseguer, J.: Rewriting Logic Semantics and Verification of Model Transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 18–33. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. de Lara, J., Guerra, E.: Formal Support for QVT-Relations with Coloured Petri Nets. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 256–270. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via Alloy. In: 4th MoDeVVa Workshop, pp. 47–56 (2007)

    Google Scholar 

  24. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Guerra, E., de Lara, J.: An algebraic semantics for QVT-relations check-only transformations. Fundamenta Informaticae 114, 73–101 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Calegari, D., Szasz, N.: Institution-based semantics for MOF and QVT-Relations (extended version). Tech. Rep. 13-06, InCo-PEDECIBA (2013) ISSN 0797-6410, http://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR1306.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calegari, D., Szasz, N. (2013). Institution-Based Semantics for MOF and QVT-Relations. In: Iyoda, J., de Moura, L. (eds) Formal Methods: Foundations and Applications. SBMF 2013. Lecture Notes in Computer Science, vol 8195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41071-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41071-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41070-3

  • Online ISBN: 978-3-642-41071-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics