Skip to main content

– Mastering Left and Right – Different Approaches to a Problem That Is Not Straight Forward

  • Conference paper
KI 2013: Advances in Artificial Intelligence (KI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8077))

Included in the following conference series:

Abstract

Reasoning over spatial descriptions involving relations that can be described as left, right and inline has been studied extensively during the last two decades. While the fundamental nature of these relations makes reasoning about them applicable to a number of interesting problems, it also makes reasoning about them computationally hard. The key question of whether a given description using these relations can be realized is as hard as deciding satisfiability in the existential theory of the reals. In this paper we summarize the semi-decision procedures proposed so far and present the results of a random benchmark illustrating the relative effectiveness and efficiency of these procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altshuler, A., Bokowski, J., Steinberg, L.: The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes. Discrete Mathematics 31(2), 115–124 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A.: Oriented matroids. Encyclopedia of mathematics and its applications. Cambridge University Press (1999)

    Google Scholar 

  3. Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with applications to verification. Springer (2007)

    Google Scholar 

  4. Condotta, J.F., Saade, M., Ligozat, G.: A Generic Toolkit for n-ary Qualitative Temporal and Spatial Calculi. In: TIME 2006: Proceedings of the Thirteenth International Symposium on Temporal Representation and Reasoning, pp. 78–86. IEEE Computer Society (2006)

    Google Scholar 

  5. Dechter, R.: From Local to Global Consistency. Artificial Intelligence 55, 87–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delafontaine, M., Cohn, A.G., Van de Weghe, N.: Implementing a qualitative calculus to analyse moving point objects. Expert Systems with Applications 38(5), 5187–5196 (2011)

    Article  Google Scholar 

  7. Dylla, F., Moratz, R.: Empirical complexity issues of practical qualitative spatial reasoning about relative position. In: Proceedings of the Workshop on Spatial and Temporal Reasoning at ECAI 2004 (2004)

    Google Scholar 

  8. Goodman, J.E., Pollack, R.: Proof of Grünbaum’s conjecture on the stretchability of certain arrangements of pseudolines. Journal of Combinatorial Theory, Series A 29(3), 385–390 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lücke, D., Mossakowski, T.: A much better polynomial time approximation of consistency in the lr calculus. In: Proceedings of the 5th Starting AI Researchers’ Symposium, pp. 175–185. IOS Press, Amsterdam (2010)

    Google Scholar 

  10. Lücke, D., Mossakowski, T., Wolter, D.: Qualitative reasoning about convex relations. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 426–440. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Moratz, R., Lücke, D., Mossakowski, T.: A condensed semantics for qualitative spatial reasoning about oriented straight line segments. Artificial Intelligence 175(16-17), 2099–2127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction on adjustable levels of granularity. CoRR (2010)

    Google Scholar 

  13. Nieto, J.A.: Chirotope concept in various scenarios of physics. Revista Mexicana de Fisica 51, 5 (2005)

    Google Scholar 

  14. Richter-Gebert, J.: On the realizability problem of combinatorial geometries–decision methods. TH Darmstadt (1992)

    Google Scholar 

  15. Richter-Gebert, J., Ziegler, G.: Oriented Matroids, ch. 6, 2nd edn. Discrete Mathematics and Its Applications, pp. 129–151. Chapman and Hall/CRC (2004)

    Google Scholar 

  16. Richter-Gebert, J.: Mechanical theorem proving in projective geometry (1993)

    Google Scholar 

  17. Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)

    Google Scholar 

  18. Scivos, A., Nebel, B.: The Finest of its Class: The Natural, Point-Based Ternary Calculus \(\mathcal{LR}\) for Qualitative Spatial Reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 283–303. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative Spatial Representation and Reasoning in the SparQ-Toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 39–58. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Wolter, D., Lee, J.: Qualitative reasoning with directional relations. Artificial Intelligence 174(18), 1498–1507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolter, D.: Analyzing qualitative spatio-temporal calculi using algebraic geometry. Spatial Cognition & Computation 12(1), 23–52 (2011)

    Article  Google Scholar 

  22. Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6(1), 49–58 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Delden, A., Mossakowski, T. (2013). – Mastering Left and Right – Different Approaches to a Problem That Is Not Straight Forward. In: Timm, I.J., Thimm, M. (eds) KI 2013: Advances in Artificial Intelligence. KI 2013. Lecture Notes in Computer Science(), vol 8077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40942-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40942-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40941-7

  • Online ISBN: 978-3-642-40942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics