Skip to main content

Part of the book series: RNA Technologies ((RNATECHN))

  • 2086 Accesses

Abstract

Structural DNA nanotechnology utilizes key properties of DNA such as its persistence length and base pairing specificity to build molecularly identical architectures on the nanoscale. Of particular interest are the family of well-defined three-dimensional architectures including various polyhedra, boxes, tubes, and DNA-based dendrimers. Such scaffolded DNA architectures have recently been explored as nanoscale containers for functional molecules and as molecular breadboards to site specifically display the latter.

These DNA nanostructures have also been shown to interact specifically with cell-surface markers and trigger signaling pathways in a gamut of biological systems through specific targets. Such studies indicate the emerging potential of DNA structures in nanomedicine that could enable targeted delivery of molecular payloads within living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldaye FA, Sleiman HF (2007) Modular access to structurally switchable 3D discrete DNA assemblies. J Am Chem Soc 129:13376–13377

    Article  PubMed  CAS  Google Scholar 

  • Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799

    Article  PubMed  CAS  Google Scholar 

  • Andersen FF, Knudsen B, Oliveira CL et al (2008) Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res 36:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    Article  PubMed  CAS  Google Scholar 

  • Bhatia D, Mehtab S, Krishnan R et al (2009) Icosahedral DNA nanocapsules by modular assembly. Angew Chem Int Ed 48:4134–4137

    Article  CAS  Google Scholar 

  • Bhatia D, Sharma S, Krishnan Y (2011a) Synthetic, biofunctional nucleic acid-based molecular devices. Curr Opin Biotechnol 22:475–484

    Article  PubMed  CAS  Google Scholar 

  • Bhatia D, Surana S, Chakraborty S et al (2011b) A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2:339

    Article  PubMed  Google Scholar 

  • Chang M, Yang CS, Huang DM (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5:6156–6163

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633

    Article  PubMed  CAS  Google Scholar 

  • Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  PubMed  CAS  Google Scholar 

  • Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  PubMed  CAS  Google Scholar 

  • Erben CM, Goodman RP, Turberfield AJ (2006) Single-molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed 45:7414–7417

    Article  CAS  Google Scholar 

  • Goodman RP, Schaap IAT, Tardin CF et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    Article  PubMed  CAS  Google Scholar 

  • Goodman RP, Heilemann M, Doose S et al (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96

    Article  PubMed  CAS  Google Scholar 

  • Hamblin GD, Carneiro KM, Fakhoury JF et al (2012) Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 134:2888–2891

    Article  PubMed  CAS  Google Scholar 

  • He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    Article  PubMed  CAS  Google Scholar 

  • Keum JW, Ahn JH, Bermudez H (2011) Design, assembly, and activity of antisense DNA nanostructures. Small 7:3529–3535

    Article  PubMed  CAS  Google Scholar 

  • Ko S, Liu H, Chen Y et al (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043

    Article  PubMed  CAS  Google Scholar 

  • Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156

    Article  CAS  Google Scholar 

  • Lee H, Lytton-Jean AKR, Che Y et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wei B, Nangreave J et al (2009) A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J Am Chem Soc 131:13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Li J, Pei H, Zhu B et al (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Rinker S, Wang X et al (2008) In vivo cloning of artificial DNA nanostructures. Proc Natl Acad Sci USA 105:17626–17631

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Xu Y, Yu T et al (2012) A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett 12:4254–4259

    Article  PubMed  CAS  Google Scholar 

  • Lo PK, Karam P, Aldaye FA et al (2010) Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat Chem 2:319–328

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Herdewijn P, Matusda A et al (eds) Curr Protoc Nucleic Acid Chem. doi:10.1002/0471142700

    Google Scholar 

  • Mei Q, Wei X, Su F (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Modi S, Bhatia D, Simmel FC et al (2010) Structural DNA nanotechnology: from bases to bricks, from structure to function. J Phys Chem Lett 1:1994–2005

    Article  CAS  Google Scholar 

  • Pinheiro V, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  PubMed  CAS  Google Scholar 

  • Sacca B, Neimeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed 51:58–66

    Article  CAS  Google Scholar 

  • Schüller VJ, Heidegger S, Sandholzer N et al (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702

    Article  PubMed  Google Scholar 

  • Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Buchsbaum RN, Zimniak A et al (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  • Walsh AS, Yin H, Erben CM et al (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Seeman NC (1994) Construction of DNA-trucated octahedron. J Am Chem Soc 116:1661–1669

    Article  CAS  Google Scholar 

  • Zhang C, He Y, Su M et al (2009) Faraday Discuss 143:221–233

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Su M, He Y et al (2010) Exterior modification of a DNA tetrahedron. Chem Commun 46:6792–6794

    Article  CAS  Google Scholar 

  • Zhang C, Tian C, Guo F et al (2012) DNA-directed three-dimensional protein organization. Angew Chem Int Ed 51:3382–3385

    Article  CAS  Google Scholar 

  • Zhao Z, Jacovetty EL, Liu Y et al (2011) Encapsulation of gold nanoparticles inside a DNA origami cage. Angew Chem Int Ed 50:2041–2044

    Article  CAS  Google Scholar 

  • Zimmermann J, Cebulla MP, Mönninghoff S et al (2008) Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3 h) linkers. Angew Chem Int Ed 47:3626–3630

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of YK lab for their constructive inputs. DB thanks CSIR, GoI for research fellowship. YK thanks Wellcome Trust-DBT India Alliance, GoI for research funding and Department of Biotechnology, GoI for the Innovative Young Biotechnologist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamuna Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhatia, D., Krishnan, Y. (2013). Designer Nucleic Acid-Based Devices in Nanomedicine. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_1

Download citation

Publish with us

Policies and ethics