Skip to main content

A Simpler Proof for \(O(\textrm{Congestion} + \textrm{Dilation})\) Packet Routing

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

Abstract

In the store-and-forward routing problem, packets have to be routed along given paths such that the arrival time of the latest packet is minimized. A groundbreaking result of Leighton, Maggs and Rao says that this can always be done in time \(O(\textrm{congestion} + \textrm{dilation})\), where the congestion is the maximum number of paths using an edge and the dilation is the maximum length of a path. However, the analysis is quite arcane and complicated and works by iteratively improving an infeasible schedule. Here, we provide a more accessible analysis which is based on conditional expectations. Like [LMR94], our easier analysis also guarantees that constant size edge buffers suffice.

Moreover, it was an open problem stated e.g. by Wiese [Wie11], whether there is any instance where all schedules need at least \((1+\varepsilon)\cdot(\textrm{congestion}+\textrm{dilation})\) steps, for a constant ε > 0. We answer this question affirmatively by making use of a probabilistic construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Spencer, J.H.: The probabilistic method, 3rd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken (2008); With an appendix on the life and work of Paul Erdős

    Book  MATH  Google Scholar 

  2. Clementi, A.E.F., Di Ianni, M.: On the hardness of approximating optimum schedule problems in store and forward networks. IEEE/ACM Trans. Netw. 4(2), 272–280 (1996)

    Article  Google Scholar 

  3. Dubhashi, D.P., Panconesi, A.: Concentration of measure for the analysis of randomized algorithms. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; Dedicated to P. Erdős on his 60th Birthday). Colloq. Math. Soc. János Bolyai, vol. II, 10, pp. 609–627. North-Holland, Amsterdam (1975)

    Google Scholar 

  5. Feige, U., Scheideler, C.: Improved bounds for acyclic job shop scheduling. Combinatorica 22(3), 361–399 (2002)

    Article  MathSciNet  Google Scholar 

  6. Koch, R., Peis, B., Skutella, M., Wiese, A.: Real-Time Message Routing and Scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 217–230. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in O(congestion + dilation) steps. Combinatorica 14(2), 167–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding O (congestion + dilation) packet routing schedules. Combinatorica 19(3), 375–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mastrolilli, M., Svensson, O.: Hardness of approximating flow and job shop scheduling problems. J. ACM 58(5), 20 (2011)

    Article  MathSciNet  Google Scholar 

  10. Moser, R.A., Tardos, G.: A constructive proof of the general lovász local lemma. J. ACM 57(2) (2010)

    Google Scholar 

  11. Mitzenmacher, M., Upfal, E.: Probability and computing. Randomized algorithms and probabilistic analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  12. Meyer auf der Heide, F., Vöcking, B.: Shortest-path routing in arbitrary networks. J. Algorithms 31(1), 105–131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ostrovsky, R., Rabani, Y.: Universal o(congestion + dilation + log1 + epsilon n) local control packet switching algorithms. In: STOC, pp. 644–653 (1997)

    Google Scholar 

  14. Peis, B., Skutella, M., Wiese, A.: Packet Routing: Complexity and Algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Peis, B., Wiese, A.: Universal Packet Routing with Arbitrary Bandwidths and Transit Times. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 362–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Rabani, Y., Tardos, É.: Distributed packet switching in arbitrary networks. In: STOC, pp. 366–375 (1996)

    Google Scholar 

  17. Scheideler, C.: Universal Routing Strategies for Interconnection Networks. LNCS, vol. 1390. Springer, Heidelberg (1998)

    Google Scholar 

  18. Srinivasan, A., Teo, C.: A constant-factor approximation algorithm for packet routing and balancing local vs. global criteria. SIAM J. Comput. 30(6), 2051–2068 (2000)

    Article  MathSciNet  Google Scholar 

  19. Wiese, A.: Packet Routing and Scheduling. Dissertation, TU Berlin (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rothvoß, T. (2013). A Simpler Proof for \(O(\textrm{Congestion} + \textrm{Dilation})\) Packet Routing. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics