Skip to main content

Optimal Gap Navigation for a Disc Robot

  • Conference paper
Algorithmic Foundations of Robotics X

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

This paper considers the problem of globally optimal navigation with respect to Euclidean distance for disc-shaped, differential-drive robot placed into an unknown, simply connected polygonal region. The robot is unable to build precise geometric maps of the environment. Most of the robot’s information comes from a gap sensor, which indicates depth discontinuities and allows the robot to move toward them. A motion strategy is presented that optimally navigates the robot to any landmark in the region. Optimality is proved and the method is illustrated in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canny, J., Reif, J.: New lower bound techniques for robot motion planning problems. In: Proceedings IEEE Symposium on Foundations of Computer Science, pp. 49–60 (1987)

    Google Scholar 

  2. Chen, D.Z., Wang, H.: Paths among curved obstacles in the plane. In: Proceedings of Computing Research Repository (2011)

    Google Scholar 

  3. Chew, L.P.: Planning the shortest path for a disc in O(n 2 log n) time. In: Proceedings ACM Symposium on Computational Geometry (1985)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  5. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robotics and Automation Magazine 13(2), 99–110 (2006)

    Article  Google Scholar 

  6. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  7. Ghosh, S.K., Mount, D.M.: An output sensitive algorithm for computing visibility graphs. In: Proceedings IEEE Symposium on Foundations of Computer Science, pp. 11–19 (1987)

    Google Scholar 

  8. Landa, Y., Tsai, R.: Visibility of point clouds and exploratory path planning in unknown environments. Communications in Mathematical Sciences 6(4), 881–913 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), http://planning.cs.uiuc.edu/

    Book  MATH  Google Scholar 

  10. LaValle, S.M.: Sensing and filtering: A fresh perspective based on preimages and information spaces. Foundations and Trends in Robotics Series. Now Publishers, Delft, The Netherlands (2012)

    Google Scholar 

  11. Liu, Y.-H., Arimoto, S.: Finding the shortest path of a disc among polygonal obstacles using a radius-independent graph. IEEE Trans. on Robotics and Automation 11(5), 682–691 (1995)

    Article  Google Scholar 

  12. Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S.M.: Detours for optimal navigation with a disc robot, pp. 1–21 (February 2012), http://www.cimat.mx/%7Emurrieta/Papersonline/AppendixWAFR12.pdf

  13. Mitchell, J.S.B.: Shortest paths and networks. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 607–641. Chapman and Hall/CRC Press, New York (2004)

    Google Scholar 

  14. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem. Journal of the ACM 38, 18–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Murphy, L., Newman, P.: Using incomplete online metric maps for topological exploration with the gap navigation tree. In: Proc. IEEE Int. Conf. on Robotics & Automation (2008)

    Google Scholar 

  16. Reif, J.H., Sun, Z.: An efficient approximation algorithm for weighted region shortest path problem. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 191–203. A.K. Peters, Wellesley (2001)

    Google Scholar 

  17. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  18. Tovar, B., Murrieta, R., LaValle, S.M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Trans. on Robotics 23(3), 506–518 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto Lopez-Padilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S.M. (2013). Optimal Gap Navigation for a Disc Robot. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics