Skip to main content

Thermal Properties of Rocks and Density of Fluids

  • Chapter
  • First Online:
Applied Geothermics

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

This Chapter describes the most important thermal parameters such as conductivity, capacity, duffusivity and interrelation of these parameters between themselves. Effect of thermal anisotropy in some cases may significantly change the studied geothermal pattern. Investigation of melting points of rocks and minerals, and temperature and pressure influence to thermal properties of rocks and minerals and fluid density play an important role in development of deep geothermal models. It is shown that analysis of the early Earth atmosphere is significant for detecting some peculiarities of the modern geothermal regime of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y (1993) Physical state of the very early Earth. Lithos 30(3–4):223–235

    Google Scholar 

  • Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Inter 100(1–4):27–39

    Google Scholar 

  • Adylov GT, Mansurova EP (1999) The use of basalt rocks from koitashskoe ore deposit in production of building ceramics and filter materials. Glass Ceram 56(1–2):20–21

    Google Scholar 

  • Aleinikov AL, Belikov VT, Eppelbaum LV, Nemzorov NI (2000) Mountainous rock destruction and metamorphic processes in the Earth: a view from classical physics. Sci Isr (3):65–87

    Google Scholar 

  • Aliev SA, Mekhtiev SF (1970) Geothermics of depression zones of Azerbaijan. Report for 1964–1970. AzTGF, Baku (in Russian)

    Google Scholar 

  • Aliev SA, Rustamov RI, Mirzababayev II, Alieva ZA (1977) Geothermal cross-section of forerunner of superdeep Saatly borehole. Izv AN Azerb SSR, Ser: Earth Sci 6:115–117 (in Russian)

    Google Scholar 

  • Anderson DL (2007) New theory of the Earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Anderson DL, Whitcomb JH (1973) The dilatancy-diffusion model of earthquake prediction. In: Kovach RL, Nur A (eds) Proceedings of the Conference on tectonic problems of the San Andreas fault, geological sciences, vol 13, pp 417–426

    Google Scholar 

  • Aronson JR, Bellotti LH, Eckroad SW, Emslie AG, McConnell RK, von Thüna PC (1970) Infrared spectra and radiative thermal conductivity of minerals at high temperatures. J Geophys Res 75(17):3443–3456

    Google Scholar 

  • Attrill PG, Gibb FGF (2003) Partial melting and recrystallization of granite and their application to deep disposal of radioactive waste: Part 1—rationale and partial melting. Lithos 67(1–2):103–117

    Google Scholar 

  • Bayly B (1968) Introduction to petrology. Prentice-Hall Inc, Englewood Cliffs, NJ

    Google Scholar 

  • Best MG (2002) Igneous and metamorphic petrology, 2nd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Birch F, Clark H (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. Am J Sci 238(8):529–558, 613–635

    Google Scholar 

  • Birch F, Schairer JF, Spicer HC (eds) (1942) Handbook of physical constants. Geological Society of America. Special papers, No. 36

    Google Scholar 

  • Blackwell DD, Steele JL (1989) Thermal conductivity of sedimentary rocks: measurement and significance. In: Naeser ND, McCulloch TH (eds) Thermal history of sedimentary basins. Springer, New York, pp 5–96

    Google Scholar 

  • Blesh CJ, Kulacki FA, Christensen RN (1983) Application of integral methods to prediction of heat transfer from a nuclear waste repository. Open file report ONWI-495, Battelle Memorial Institute, Columbus, OH, 12–17

    Google Scholar 

  • Brigaud F (1989) Conductiviteґ thermique et champґ de temperature dans les bassins seґdimentaires a` partir des donneґes de puits (Documents et Travaux, Centre Geґologique et Geґophysique de Montpellier)

    Google Scholar 

  • Cannat M, Karson JA, Miller DJ et al. (1995) Proceedings of the ocean drilling program, initial reports, vol 153

    Google Scholar 

  • Čermak V, Rybach L (1982) Thermal conductivity and specific heat of minerals and rocks. In: Angenheister G (ed) Landolt-Bornstein numerical data and functional relationships in science and technology. Springer, New York, pp 213–256

    Google Scholar 

  • Charles JA (1991) Laboratory share strength tests and the stability of rockfill slopes. In: Maranha das Neves E (ed) Advances in rockfill structures. Springer, New York, pp 53–72

    Google Scholar 

  • CRC Handbook on Chemistry and Physics, 1974. 55th Ed., CRC Press, Florida

    Google Scholar 

  • Cheremensky GA (1977) Applied geothermics. Nedra, Leningrad (in Russian)

    Google Scholar 

  • Cherry JTh, Schock RN, Sweet J (1975) A theoretical model of the dilatant behavior of a brittle rock. Pure Appl Geophys 113(1):183–196

    Google Scholar 

  • Cho WJ, Kwon S, Choi JW (2009) The thermal conductivity for granite with various water contents. Eng Geol 107(3–4):167–171

    Google Scholar 

  • Chu J, Kim SR, Oh YN, Balasubramaniam AS, Bergado DT (2004) An experimental and theoretical study on the dilatancy of sand and clays. In: Proceedings of the 9th Australia–New Zealand. Conference on geomechanics, vol 2, Auckland, New Zealand, pp 654–660

    Google Scholar 

  • Clark SP Jr (Ed.) (1966) Handbook of physical constants (revised edition). Geological Society of America. Memoir 97, Washington, DC

    Google Scholar 

  • Clauser C (1988) Opacity: the concept of radiative thermal conductivity. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publication, Dordrecht, pp 143–165

    Google Scholar 

  • Clauser C (2006) Geothermal energy. In: Heinloth K (ed) Landolt-Börnstein, group VIII: advanced materials and technologies, vol 3. Energy technologies, Subvol. C: renewable energies, Springer, Berlin, pp 493–604

    Google Scholar 

  • Clauser Ch (2009) Heat transport processes in the Earth’s crust. Surv Geophys 30:163–191

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Reference shelf 3, pp 105–126

    Google Scholar 

  • Côté J, Konrad J-M (2005) Thermal conductivity of base-course materials. Can Geotech J 42:61–78

    Google Scholar 

  • Dakhnov VN (1972) Interpretation of geophysical investigations of borehole sections. Nedra, Moscow (in Russian)

    Google Scholar 

  • Dakhnov VN, Dyakonov DI (1952) Thermal investigation of boreholes. Gostoptekhizdat, Leningrad (in Russian)

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral 92:370–379

    Google Scholar 

  • Del Gaudio P, Di Toro G, Han R, Hirose T, Nielsen S, Shimamoto T, Cavallo A (2009) Frictional melting of peridotite and seismic slip. J Geophys Res 114:B06306. doi:10.1029/2008JB005990

    Google Scholar 

  • Dmitriev AP, Kuzyaev LS, Protasov YuI, Yamschikov VS (1969) Physical properties of rocks at high temperatures. Nedra, Moscow (in Russian)

    Google Scholar 

  • Dortman NB (ed) (1976) Physical properties of rocks and minerals (petrophysics): handbook of geophysicist. Nedra, Moscow (in Russian)

    Google Scholar 

  • Drake MJ (2000) Accretion and primary differentiation of the Earth: a personal journey. Geochim Cosmochim Acta 64:2363–2370

    Google Scholar 

  • Drake MJ (2005) Origin of water in the terrestrial planets. Meteoritics Planet Sci 40:519–527

    Google Scholar 

  • Driatskaya ZV, Mkhchiyan MA, Zhmikhova NM (eds) (1971) Oils of the USSR, handbook, vol I, oils of northern regions of the European part of the USSR and the Urals. Khimiya, Moscow (in Russian)

    Google Scholar 

  • Driatskaya ZV, Mkhchiyan MA, Zhmikhova NM (eds) (1972) Oils of the USSR, handbook, vol II, oils of the middle and lover Volga region. Khimia, Moscow (in Russian)

    Google Scholar 

  • Durham WB, Mirkovich VV, Heard HC (1987) Thermal diffusivity of igneous rocks at elevated pressure and temperature. J Geophys Res 92(B11):11615–11634. doi:10.1029/JB092iB11p11615

    Google Scholar 

  • ETB (2011) The engineering toolbox. Solids: specific heat capacities

    Google Scholar 

  • Eucken A (1911) Dependence of the thermal conductivity of certain gases on the temperature. Physihal Zeitsch 12:1101–1107

    Google Scholar 

  • Falloon TJ, Green DH, Danyushevsky LV (2007) Crystallization temperatures of tholeiite parental liquids: implications for the existence of thermally driven mantle plumes. In: Foulger GR, Jurdy DM, (eds) Plates, plumes, and planetary processes. The Geological Society of America, special paper 430, Boulder, Colorado, pp 235–260

    Google Scholar 

  • Faure G (2000) Origin of igneous rocks: the isotopic evidence. Springer, Berlin

    Google Scholar 

  • Faure G, Mensing TM (2007) Introduction to planetary science: the geological perspective. Springer, Berlin

    Google Scholar 

  • Genda H, Ikoma M (2008) Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194:42–52

    Google Scholar 

  • Gillis K, Mével C, Allan J et al (1993) Proceedings of ODP, initial reports, 147: College Station, TX (Ocean Drilling Program). Leg 147

    Google Scholar 

  • Golden DC, Ming DW, Lauer HV Jr, Morris RV (2004) Thermal decomposition of sideritepyrite assemblages: implications for sulfide mineralogy in martian meteorite ALH84001 carbonate globules. Lunar Planet Sci XXXV, No. 1396

    Google Scholar 

  • Gretener PE (1981) Geothermics: using temperature in hydrocarbon exploration. AAPG, Short Course Notes, 17

    Google Scholar 

  • Grove TL, Parman SW (2004) Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett 219:173–187

    Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Plan Sci Lett 249:74–89

    Google Scholar 

  • Hall H (1995) Igneous petrology. Longman Science and Technology, Singapore

    Google Scholar 

  • Hanley EJ, Dewitt DP, Roy RF (1978) The thermal diffusivity of eight well-characterized rocks for the temperature range 300–1,000 K. Eng Geol 12:31–47

    Google Scholar 

  • Hewins RH, Jones RH, Scott ERD (eds) (1996) Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge

    Google Scholar 

  • Hofmeister AM (2007) Pressure dependence of thermal transport properties. Proc Nat Acad Sci USA 104(22):9192–9197

    Google Scholar 

  • Hofmeister AM, Perterman M (2008) Thermal diffusivity of clinopyroxenes at elevated temperature. Eur J Mineral 20:537–549

    Google Scholar 

  • Holland HD (1984) The chemical evolution of atmosphere and oceans. Princeton University Press, Princeton, USA

    Google Scholar 

  • Hurtig E, Brugger H (1970) Heat conductivity measurements under uniaxial pressure. Tectonophysics 10:67–77

    Google Scholar 

  • Ihmels E, Clemmon EW, Gmehling J (2003) An equation of state and compressed liquid supercritical densities for sulfur dioxide. Fluid Phase Equilib 207:111–130

    Google Scholar 

  • Kappelmeyer O, Hänel R (1974) Geothermics with special reference to application. Gebruder Borntrargen, Berlin, Stutgart

    Google Scholar 

  • Kasting JF, Ackerman TP (1986) Climate consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science 234:1383–1385

    Google Scholar 

  • Kelemen PB, Kikawa E, Miller DJ et al. (2004) Proceedings of the ocean drilling program, initial reports, vol 209

    Google Scholar 

  • Kerimov KM, Pilchin AN (1986a) Use of geothermics data for prognosis of abnormal stratum pressure and oil and gas perspectives at great depths. In: Kerimov KM (ed) Combined interpretation of geological-geophysical data with the goal to search oil and gas presence at great depths. Baku Book Publishers, Baku, pp 25–36 (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN (1986b) Geothermal regime of the sedimentary cover of Azerbaijan and Caspian sea depression areas. Azerbaijan Oil Ind 1:9–13 (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN, Ibragimov SM (1980) Influence of thermodynamical factor on the overhigh pressure in sedimentary strata. Azerbajan Oil Industry (Azerbaijanskoe Neftyanoe Khozyaistvo) 2:6–9 (in Russian)

    Google Scholar 

  • Kim J, Lee Y, Koo M (2007) Thermal properties of granite from Korea. AGU Fall Meeting 2007, abstract #T11B-0576

    Google Scholar 

  • Kukkonen IT, Jokinen J, Seipold U (1999) Temperature and pressure dependencies of thermal transport properties of rocks: implications for uncertainties in thermal lithosphere models and new laboratory measurements of high-grade rocks in the Central Fennoscandian Shield. Surv Geophys 20(1):33–59

    Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1968) Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res 73(18):6023–6029

    Google Scholar 

  • Kutas RI, Gordienko VV (1971) Heat flow of the Ukraine. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869

    Google Scholar 

  • Lee CTA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Plan Sci Lett 279:20–33

    Google Scholar 

  • Li J, Agee CB (1996) Geochemistry of mantle-core differentiation at high pressure. Nature 381:686–689

    Google Scholar 

  • Lide DR (ed) (2005) CRC handbook of chemistry and physics, 86th edn

    Google Scholar 

  • Litovsky E, Shapiro M (1992) Gas pressure and temperature dependencies of thermal conductivity of porous ceramic materials: part 1, refractories and ceramics with porospty below 30 %. J Am Ceramic Soc 75(12):3425–3439

    Google Scholar 

  • Liu L (2004) The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184

    Google Scholar 

  • Lubimova EA (1968a) Thermics of the Earth and Moon. Nauka, Moscow (in Russian)

    Google Scholar 

  • Lubimova EA (1968a) Thermal history of the Earth. In: The Earth’s crust and upper mantle. American Geophysical Union, geophysical monograph series, vol 13, pp 63–77

    Google Scholar 

  • Lubimova EA, Smirnova EV (1974) Heat physical properties of rocks at high temperatures. In: Physical properties of rocks under high pressure and temperature. Trans. of IV All-Union Congress, Tbilisi, pp 171–172 (in Russian)

    Google Scholar 

  • Lubimova EA, Lusova LN, Firsov FV (1964) Basics of heat flow from Earths depths determination and results of measurements. In: Geothermal researches. Nauka, Moscow, pp 5–103 (in Russian)

    Google Scholar 

  • Lubimova EA, Maslennikov AI, Ganiyev YA (1978) Heat conductivity of sedimentary rocks under elevated pressure and temperatures and polymorphism. In: Physical properties of rocks under high thermodynamic parameters. Trans. of IV All-Union Congress, Baku, “Elm” Publication, pp 230–231 (in Russian)

    Google Scholar 

  • Magara K (1978) Compaction and fluid migration: practical petroleum geology. Elsevier, NY

    Google Scholar 

  • Magnitsky VA (1965) Internal structure and physics of the Earth. Nedra, Moscow (in Russian)

    Google Scholar 

  • Matsui T, Abe Y (1986) Formation of a ‘magma ocean’ on the terrestrial planets due to the blanketing effect of an impact-induced atmosphere. Earth Moon Planet 34:223–230

    Google Scholar 

  • McCall GJ (1973) Meteorites and their origins. Wiley, NY

    Google Scholar 

  • McSween HY Jr (1993) Stardust to planets. St. Martin’s Griffin, NY

    Google Scholar 

  • Mekhtiev SF, Mirzajanzadeh AKh, Aliyev SA (1971) Geothermal investigation of oil and gas fields. Nedra, Moscow (in Russian)

    Google Scholar 

  • Mekhtiev SF, Kashkay MA, Aliev SA (1972) Investigation of relationships of heat flow with construction and evolution tectonic structure and geophysical fields in different tectonic structures of USSR. (Pre-Kura oil and gas province, Apsheron oil and gas province). Scientific report for 1971–1972. Baku, Azerbaijan Geol. Fund

    Google Scholar 

  • Mekhtiev SF, Geodekyan AA, Tsaturyants AB, Ter-Karapetyants ZN, Bayramov EM, Shabanov CF (1973) Geothermics of oil and gas fields of Azerbaijan and Turkmenistan. Nauka, Moscow (in Russian)

    Google Scholar 

  • Mekhtiev SF, Kerimov KM, Pilchin AN (1982) Role of thermal factors on formation and preservation of AVPD in sedimentary cover of Kura depression. Azerbaijan Oil Industry (Azerbaijanskoye Neftyanoye Khozyaystvo) 3:1–5 (in Russian)

    Google Scholar 

  • Mekhtiev SF, Kerimov KM, Pilchin AN, Agabekov AM (1985) Geothermal regime of depression zones of the Caucasus and SW part of Turanskaya plate and its influence on formation of abnormal pressures within their deposits. In: Ismail-Zade TA et al. (eds) Trans. of Scien-Techn. Meet. Geological-geophysical methods of searching oil and gas fields at great depths, Baku, pp 76–78 (in Russian)

    Google Scholar 

  • Morse JW, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquat Geochem 4(3–4):301–319

    Google Scholar 

  • Nikonova NS, Tikhomirova IN, Belyakov AV, Zakharov AI (2003) Wollastonite in silicate matrices. Glass Ceram 60(9–10):342–346

    Google Scholar 

  • Nur A (1972) Dilatancy, pore fluids, and premonitory variations of TS/TP travel times. Bull Seismol Soc Am 62(5):1217–1222

    Google Scholar 

  • Nur A (1975) A note on the constitutive law for dilatancy. Pure Appl Geophys 113(1):197–206

    Google Scholar 

  • Pender MJ (1978) A model for the behaviour of overconsolidated soils. Geotechnique 28(1):1–25

    Google Scholar 

  • Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals at high temperature. Am Mineral 91(11–12):1747–1760

    Google Scholar 

  • Petrunin GI, Popov VG (1995) Temperature dependence of lattice thermal conductivity of Earth’s mineral substance. Izv Russ Acad Sci, Phys Solid Earth 30(7–8)

    Google Scholar 

  • Pilchin AN (1978a) Correction to hydrostatic pressure in the crust of the Middle Kura depression. In: Geophysical researches of the oil, gas and ore deposits in Azerbaijan, Baku, pp 78–80 (in Russian)

    Google Scholar 

  • Pilchin A (1983) Geothermal regime of Earth’s crust of the Kura depression and its influence on pressure distribution in it. Ph.D. thesis, Institute of Geophysics of the Georg. Academy of Science, Tbilisi (in Russian)

    Google Scholar 

  • Pilchin AN (2011) Magnetite: the story of the mineral’s formation and stability. In: Angrove DM (ed) Magnetite: structure, properties and applications. Nova Science Publishers, NY, pp 1–99 Chapter 1

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2002) Some peculiarities of thermodynamic conditions of the Earth crust and upper mantle. Sci Isr 4(1–2):117–142

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2004) On the stability of ferrous and ferric iron oxides and its role in rocks and rock-forming minerals stability. Sci Isr 6(3–4):119–135

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2006) Iron and its unique role in earth evolution. Monograph 9, Mexican Geophys Soc

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2009) The early Earth and formation of the lithosphere. In: Anderson JE, Coates RW (eds) The Lithosphere: Geochemistry, Geology and Geophysics. Nova Science Publishers, NY, pp 1–68 Chapter 1

    Google Scholar 

  • Pilchin AN, Kerimov KM (1986) Some features of abnormality of pressure coefficient change in collectors with different character of saturation. In: Mikhailov IM, Rizhik VM, Shendrey LP (eds) Role of abnormal pressures in oil and gas field distribution. IGIRGI Publishers, Moscow, pp 140–143 (in Russian)

    Google Scholar 

  • Poelchau HS, Baker DR, Hantschel Th, Horsfield B, Wygrala B (1997) Basin simulation and the design of the conceptual basin model. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evaluation. Springer, Berlin, pp 36–41

    Google Scholar 

  • Pollack HN (1997) Thermal characteristics of the Archaean. In: de Wit MJ, Ashwal MD (eds) Greenstone belts. Clarendon Press, Oxford, UK, pp 223–232

    Google Scholar 

  • Popov YA, Pevzner LA, Romushkevich RA, Korostelev VM, Vorob’yev MG (1995) Thermophysical and geothermal sections obtained from Kolvinskaya well logging data. Izv Acad Sci Russ, Phys Solid Earth 30:778–789

    Google Scholar 

  • Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161

    Google Scholar 

  • Prats M (1982) Thermal recovery, vol 7., Monograph SeriesSociety of Petroleum Engineers, Dallas

    Google Scholar 

  • Pribnow D, Williams CF, Sass JH, Keating R (1996) Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300 °C. Geophys Res Lett 23(4):391–394

    Google Scholar 

  • Proselkov YM (1975) Heat transfer in wells. Nedra, Moscow (in Russian)

    Google Scholar 

  • Rau H, Kutty TRN, Guedes de Carvalho JRF (1973) High temperature saturated vapor pressure of sulphur and the estimation of its critical quantities. J Chem Thermodyn 5:291–302

    Google Scholar 

  • Ray L, Roy S, Srinivasan R (2008) High radiogenic heat production in the Kerala Khondalite block, Southern Granulite province, India. Int J Earth Sci 97(2):257–267

    Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, NY

    Google Scholar 

  • Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact. Philos Mag 5(20):469–482

    Google Scholar 

  • Righter K, Drake MJ (1997) Metal-silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth Planet Sci Lett 146(3–4):541–553

    Google Scholar 

  • Robertson EC (1979) Thermal conductivity of rocks. U.S. Geological Survey open file report 79–356

    Google Scholar 

  • Roscoe KH, Burland JB (1968) On the generalized stress–strain behaviour of wet clay. In: Engineering plasticity, Cambridge, pp 535–609

    Google Scholar 

  • Roscoe KH, Schofield AN, Thurairajah A (1963) Yielding of clays in state Wetter than critical. Geotechnique 13(3):211–240

    Google Scholar 

  • Rowe PW (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc London, Ser A 269:500–527

    Google Scholar 

  • Sass JH, Lachenbruch AH, Munroe RJ, Greene GW, Moses TH Jr (1971) Heat flow in the western United States. J Geophys Res 76:6376–6413

    Google Scholar 

  • Schärli U, Rybach L (2001) Determination of specific heat capacity on rock fragments. Geothermics 30:93–110

    Google Scholar 

  • Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  • Scholz ChH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181(4102):803–810

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and Planets two volume set. Cambridge University Press, Cambridge

    Google Scholar 

  • Seipold U (2002) Investigation of the thermal transport properties of amphibolites: I. pressure dependence. High Temp High Pressures 34(3):299–306

    Google Scholar 

  • Seipold U, Gutzeit W (1980) Measurements of the thermal properties of rocks under extreme conditions. Phys Earth Planet Inter 22(3–4):267–271

    Google Scholar 

  • Seipold U, Huenges E (1998) Thermal properties of gneisses and amphibolites: high pressure and high temperature investigations of KTB-rock samples. Tectonophysics 291(1–4):173–178

    Google Scholar 

  • Sharma PV (2002) Environmental and engineering geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Shim BO, Park JM, Kim HC, Lee Y (2010) Statistical analysis on the thermal conductivity of rocks in the Republic of Korea. In: Proceedings of the World Geothermal Congress 2010, Bali, Indonesia

    Google Scholar 

  • Sibson RH (1981) Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature 289:665–667

    Google Scholar 

  • Simmons G (1961) Anisotropic thermal conductivity. J Geophys Res 66(7):2269–2270

    Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci US 98(7):3666–3672

    Google Scholar 

  • Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup R, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, Arizona, pp 323–338

    Google Scholar 

  • Somerton WH (1958) Some thermal characteristics of porous rocks. Trans AIME 213:375–378

    Google Scholar 

  • Somerton WH (1992) Thermal properties and temperature related behavior of rock/fluid systems. Developments in Petroleum Science, 37. Elsevier, Amsterdam

    Google Scholar 

  • Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGaw-Hill, NY

    Google Scholar 

  • Spohn T, Schubert G (1991) Thermal equilibration of the Earth following a giant impact. Geophys J Int 107:163–170

    Google Scholar 

  • Starikova GN, Lubimova EA (1973) Heat properties of rocks from Kola peninsula. In: Heat flows from Earth crust and upper mantle. Nauka, Moscow, pp 112–124 (in Russian)

    Google Scholar 

  • Stimpfl M, Lauretta DS, Drake MJ (2004) Adsorption as a mechanism to deliver water to the Earth (abstract). Meteorit Planet Sci 39:A99

    Google Scholar 

  • Stoiber RE (1995) Volcanic gases from subaerial volcanoes on Earth. In: Global earth physics, a handbook of physical constants. AGU, Ref. Shelf 1, pp 308–319

    Google Scholar 

  • Sukumaran PV (2001) Early planetary environments and the origin of life. Resonance 6(10):16–28

    Google Scholar 

  • Tamura Y, Yuhara M, Ishii T, Irino N, Shukuno H (2003) Andesites and dacites from Daisen volcano, Japan: partial-to-total remelting of an andesite magma body. J Petrol 44(12):2243–2260

    Google Scholar 

  • Téqui C, Robie RA, Hemingway BS, Neuville DR, Richet P (1991) Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12). Geochim Cosmochim Acta 55(4):1005–1010

    Google Scholar 

  • Textor C, Graf H-F, Timmreck C, Robock A (2004) Emissions from volcanoes. In: Granier C, Reeves C, Artaxo P (eds) Emissions of chemical compounds and aerosols in the atmosphere. Kluwer, Dordrecht, pp 269–303 Chapter 7

    Google Scholar 

  • Thy P, Lesher CE, Mayfield JD (1999) Low-pressure melting studies of basalt and basaltic andesite from the southeast Greenland continental margin and the origin of dacites at site 917. In: Larsen HC, Duncan RA, Allan JF, Brooks K (eds) Proceedings of the ocean drilling program, scientific results, 163, Scient. Res. southeast Greenland Margin, Chapter 9, pp 95–112

    Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30(4):351–354

    Google Scholar 

  • Van Westrenen W, Wood BJ, Blundy JD (2001) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib Mineral Petrol 142:219–234

    Google Scholar 

  • Volarovich MP (ed) (1978) Handbook on physical properties of minerals and rocks under high thermodynamic parameters. Nedra, Moscow (in Russian)

    Google Scholar 

  • Vosteen H-D, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28:499–509

    Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosp 16(2):117–127

    Google Scholar 

  • Walter MJ, Trønnes RG (2004) Early Earth differentiation. Earth Planet Sci Lett 225(3–4):253–269

    Google Scholar 

  • Wan RG, Guo PJ (2004) Stress dilatancy and fabric dependencies on sand behavior. J Eng Mech 130(6):635–645

    Google Scholar 

  • Waples DW, Waples JS (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res 13(2):97–122

    Google Scholar 

  • Wenk H-R, Bulakh AG (2004) Minerals: their constitution and origin. Cambridge University Press, Cambridge

    Google Scholar 

  • Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321

    Google Scholar 

  • Yaws CL (2001) Matheson gas data book, 7th edn. Mcgraw-Hill, New York

    Google Scholar 

  • Yaws CL (2008) Thermophysical properties of chemicals and hydrocarbons. William Andrew, Norwich

    Google Scholar 

  • Yoder HS Jr (1976) Generation of basaltic magma. National Academy of Science, Washington, DC

    Google Scholar 

  • Zahnle KJ, Kasting JF, Pollack JB (1988) Evolution of a steam atmosphere during Earth’s accretion. Icarus 74:62–97

    Google Scholar 

  • Zhang Y, Zindler A (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet Sci Lett 117:331–345

    Google Scholar 

  • Zinger AS, Kotrovsky VV (1979) Hydro-geothermal conditions of water systems of western part of Pre-Caspian depression. Saratov University, Saratov (in Russian)

    Google Scholar 

  • Zoth G, Hänel R (1988) Appendix. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer, Dordrecht, pp 449–466

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Eppelbaum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eppelbaum, L., Kutasov, I., Pilchin, A. (2014). Thermal Properties of Rocks and Density of Fluids. In: Applied Geothermics. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34023-9_2

Download citation

Publish with us

Policies and ethics