Skip to main content

Resilient Navigation through Probabilistic Modality Reconfiguration

  • Conference paper
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 194))

  • 4145 Accesses

Abstract

This paper proposes an approach to achieve resilient navigation for indoor mobile robots. Resilient navigation seeks to mitigate the impact of control, localisation, or map errors on the safety of the platform while enforcing the robot’s ability to achieve its goal. We show that resilience to unpredictable errors can be achieved by combining the benefits of independent and complementary algorithmic approaches to navigation, or modalities, each tuned to a particular type of environment or situation. In this paper, the modalities comprise a path planning method and a reactive motion strategy. While the robot navigates, a Hidden Markov Model continually estimates the most appropriate modality based on two types of information: context (information known a priori) and monitoring (evaluating unpredictable aspects of the current situation). The robot then uses the recommended modality, switching between one and another dynamically. Experimental validation with a SegwayRMP-based platform in an office environment shows that our approach enables failure mitigation while maintaining the safety of the platform. The robot is shown to reach its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3) a large injected localisation fault.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alterovitz, R., Simeon, T., Goldberg, K.: The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty. In: Robotics: Science and Systems II (2007)

    Google Scholar 

  2. Arnaud, E., Memin, E., Cernuschi-Frias, B.: Conditional filters for image sequence based tracking - application to point tracking. IEEE Transactions on Image Processing 14(1), 63–79 (2005)

    Article  MathSciNet  Google Scholar 

  3. Barraquand, J., Latombe, J.: Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Algorithmica 10, 121–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: Proc. of IEEE International Conference on Robotics and Automation (1999)

    Google Scholar 

  5. Bryand, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: Proc. of IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  6. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  7. Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: 12th International Workshop on Principles of Diagnosis (2002)

    Google Scholar 

  8. Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems 54(4), 288–299 (2006)

    Article  Google Scholar 

  9. Kurniawati, H., Bandyopadhyay, T., Patrikalakis, N.M.: Global motion planning under uncertain motion, sensing, and environment map. In: Robotics: Science and Systems VII (2011)

    Google Scholar 

  10. Minguez, J., Montano, L.: Nearness diagram navigation (ND): Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation 20(1), 45–59 (2004)

    Article  Google Scholar 

  11. Morisset, B., Ghallab, M.: Learning how to combine sensory-motor functions into a robust behavior. Artificial Intelligence 172, 392–412 (2008)

    Article  Google Scholar 

  12. al., N.K.e.: RobotAssist - a Platform for Human Robot Interaction Research. In: Proc. of ARAA Australasian Conference on Robotics and Automation (2010)

    Google Scholar 

  13. Peynot, T., Lacroix, S.: Selection and monitoring of navigation modes for an autonomous rover. In: Khatib, O., Kumar, V., Rus, D. (eds.) The 10th International Symposium on Experimental Robotics, vol. 39, pp. 121–130. Springer, Berlin (2008)

    Google Scholar 

  14. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2000)

    Article  Google Scholar 

  15. Fernandez, V.V.R.S.J.: Probabilistic models for monitoring and fault diagnosis. In: 2nd IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Peynot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peynot, T., Fitch, R., McAllister, R., Alempijevic, A. (2013). Resilient Navigation through Probabilistic Modality Reconfiguration. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33932-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33932-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33931-8

  • Online ISBN: 978-3-642-33932-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics