Skip to main content

Design and Verification of the MPFA Scheme for Three-Dimensional Phase Field Model of Dendritic Crystal Growth

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2011

Abstract

As an alternative to the sharp interface formulation, the phase field approach is a widely used technique for modeling phase transitions. The governing system of reaction-diffusion equations captures the instability of the underlying physical problem and is capable of modeling the evolution of complicated crystal shapes during solidification of an undercooled melt. For its numerical solution, we propose our novel anti-diffusive multipoint flux approximation (MPFA) finite volume scheme on a Cartesian mesh. The scheme is verified against the analytical solution of the modified sharp interface model. Experimental order of convergence (EOC) is measured for the temperature field in the usual norms. In addition, EOC is also obtained for the phase interface through approximating the volume of the symmetric difference of the solid phase subdomains. In the anisotropic cases including unusual higher order symmetries, computational studies with various settings also confirm convergence of our MPFA scheme which is faster than in the case of the reference finite volume scheme with 2nd order flux approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Google Scholar 

  2. Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229, 6270–6299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25(3), 537–566 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Beneš, M.: Anisotropic phase-field model with focused latent-heat release. In: FREE BOUNDARY PROBLEMS: Theory and Applications II, GAKUTO International Series in Mathematical Sciences and Applications, vol. 14, pp. 18–30 (2000)

    Google Scholar 

  5. Beneš, M.: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interface. Free. Bound. 3, 201–221 (2001)

    Article  MATH  Google Scholar 

  6. Beneš, M.: Mathematical and computational aspects of solidification of pure substances. Acta Math. Univ. Comenianae 70(1), 123–151 (2001)

    MATH  Google Scholar 

  7. Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow. Appl. Math-Czech. 48(6), 437–453 (2003)

    Article  MATH  Google Scholar 

  8. Beneš, M.: Computational studies of anisotropic diffuse interface model of microstructure formation in solidification. Acta Math. Univ. Comenianae 76, 39–59 (2007)

    MATH  Google Scholar 

  9. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley (2003)

    Google Scholar 

  10. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, vol. 7, pp. 715–1022. Elsevier (2000)

    Google Scholar 

  11. Green, J.R., Jimack, P.K., Mullis, A.M., Rosam, J.: An adaptive, multilevel scheme for the implicit solution of three-dimensional phase-field equations. Numer. Meth. Part. D. E. 27, 106–120 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Mathematical Monographs. Oxford University Press (1993)

    MATH  Google Scholar 

  13. Karma, A., Rappel, W.J.: Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 77(19), 4050–4053 (1996)

    Article  Google Scholar 

  14. Karma, A., Rappel, W.J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57(4), 4 (1998)

    Article  Google Scholar 

  15. Kupferman, R., Shochet, O., Ben-Jacob, E.: Numerical study of a morphology diagram in the large undercooling limit using a phase-field model. Phys. Rev. E. 50(2), 1005–1008 (1993)

    Article  Google Scholar 

  16. McFadden, G.B., Wheeler, A.A., Braun, R.J., Coriell, S.R.: Phase-field models for anisotropic interfaces. Phys. Rev. E 48(3), 2016–2024 (1993)

    Article  MathSciNet  Google Scholar 

  17. Meirmanov, A.M.: The Stefan Problem. De Gruyter Expositions in Mathematics. Walter de Gruyter (1992)

    Google Scholar 

  18. Mullis, A.M., Cochrane, R.F.: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts. Acta Mater. 49, 2205–2214 (2001)

    Article  Google Scholar 

  19. PunKay, M.: Modeling of anisotropic surface energies for quantum dot formation and morphological evolution. In: NNIN REU Research Accomplishments, pp. 116–117. University of Michigan (2005)

    Google Scholar 

  20. R. E. Napolitano, S.L.: Three-dimensional crystal-melt Wulff-shape and interfacial stiffness in the Al-Sn binary system. Phys. Rev. B 70(21), 214,103 (2004)

    Google Scholar 

  21. Rice, J.R., Mu, M.: An experimental performance analysis for the rate of convergence of 5-point star on general domains. Tech. rep., Department of Computer Sciences, Purdue University (1988)

    Google Scholar 

  22. Schiesser, W.E.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  23. Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–3112 (1996)

    Article  MATH  Google Scholar 

  24. Singer, H.M., Singer-Loginova, I., Bilgam, J.H., Amberg, G.: Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions. J. Cryst. Growth. 296, 58–68 (2006)

    Article  Google Scholar 

  25. Strachota, P., Beneš, M.: A multipoint flux approximation finite volume scheme for solving anisotropic reaction-diffusion systems in 3D. In: J. Fořt, J. Fürst, J. Halama, R. Herbin, F. Hubert (eds.) Finite Volumes for Complex Applications VI - Problems & Perspectives, pp. 741–749. Springer (2011). DOI 10.1007/978-3-642-20671-9_78

    Google Scholar 

  26. Strachota, P., Beneš, M., Tintěra, J.: Towards clinical applicability of the diffusion-based DT-MRI visualization algorithm. J. Vis. Commun. Image R. 23(2), 387–396 (2012). DOI 10.1016/j.jvcir.2011.11.009

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the following projects: The project of the Ministry of Education of the Czech Republic MSM6840770010 Applied Mathematics in Technical and Physical Sciences. The Grant Agency of the Czech Technical University in Prague, grant No. SGS11/161/OHK4/3T/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Strachota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strachota, P., Beneš, M. (2013). Design and Verification of the MPFA Scheme for Three-Dimensional Phase Field Model of Dendritic Crystal Growth. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33134-3_49

Download citation

Publish with us

Policies and ethics