Skip to main content

A Study of the Interaction between ELF-EMF and Bacteria

  • Conference paper
Advances in Electric and Electronics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 155))

Abstract

ELF-EMF, one of environmental factors, widely exists in natural world. However, the interaction between ELF-EMF and biological materials is usually neglected in the field of biological research. Very little efforts have been put forth in studying the relationship of bacteria and ELF-EMF. Here we investigated the stress reaction of Escherichia coli, Salmonella, Bacillus subtilis and OP50 cells to the stimulation of ELF-EMF. The results showed that the ELF-EMF treatment significantly decreased the colony forming efficiency of Escherichia coli, Bacillus subtilis and OP50 and this effect may be a kind of gene-dependence effect. In addition, this study also indicated that ELF-EMF could cause significant DNA damaged. Salmonella’s DNA was serious damaged in 50 Hz, 3 mT for 18 and 24 h. Moreover, short time continual stimulated, for instance, 10 and 14 h continual stimulated also caused DNA chain’s broken to some extent. Continual stimulated and passage’s result approved that this kind of DNA damaged could be decreased by serial passage and the damaged cause by ELF-EMF exposure might be a kind of gene toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodman, E.M., Sharpe, P.T., Greenebaum, B., Marron, M.T.: Pulsed magnetic fields alter the cell surface. FEBS Letters 199, 275–278 (1986)

    Article  Google Scholar 

  2. McCann, J., Dietrich, F., Rafferty, C., McCann, J., Dietrich, F., Rafferty, C.: The genotoxic potential of electric and magnetic fields: an update. Mutat. Res. 411, 5–86 (1998)

    Google Scholar 

  3. McCann, J., Dietrich, F., Rafferty, C.: The genotoxic potential of electric and magnetic fields: an update. Mutat. Res. 411, 45–86 (1998)

    Article  Google Scholar 

  4. Murphy, J.C., Kaden, D.A., Warren, J., Sivak, A.: Power frequency electric and magnetic fields: a review of genetic toxicology. Mutat. Res. 296, 221–240 (1993)

    Google Scholar 

  5. McCan, J., Dietrich, F., Rafferty, C., Martin, A.: A critical review of the genotoxic potential of electric and magnetic fields. Mutat. Res. 297, 61–95 (1993)

    Google Scholar 

  6. Ivancsits, S., Diem, E., Pilger, A., Rüdiger, H.W., Jahn, O.: Induction of DNA strand breaks by exposure to extremely-lowfrequency electromagnetic fields in human diploid fibroblasts. Mutat. Res. 519, 1–13 (2002)

    Google Scholar 

  7. Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H.W.: Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose dependent way. Int. Arch. Occup. Environ. Health 76, 431–436 (2003)

    Article  Google Scholar 

  8. Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H.W.: Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech. Age Dev. 124, 847–850 (2003)

    Article  Google Scholar 

  9. Wertheimer, N., Leeper, E.: Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109, 273–284 (1979)

    Google Scholar 

  10. Savitz, D.A., Wachtel, H., Barnes, F.A., John, E.M., Tvrdik, J.G.: Case control study of childhood cancer and exposure to 60 Hz magnetic fields. Am. J. Epidemiol. 128, 21–38 (1988)

    Google Scholar 

  11. Feychting, M., Forssen, U., Floderus, B.: Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 8, 384–389 (1997)

    Article  Google Scholar 

  12. Li, C.Y., Theriault, G., Lin, R.S.: Residential exposure to 60 Hz magnetic fields and adult cancers in Taiwan. Epidemiology 8, 25–30 (1997)

    Article  Google Scholar 

  13. Verkasalo, P.K., Pukkala, E., Hongisto, M.Y., Valjus, J.E., Järvinen, P.J., Heikkilä, K.V., Koskenvuo, M.: Risk of cancer in Finnish children living close to power lines. Br. Med. J. 307, 895–899 (1993)

    Article  Google Scholar 

  14. Tomenius, L.: 50 Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County. Bioelectromagnetics 7, 191–207 (1986)

    Article  Google Scholar 

  15. Schreibner, G.H., Swaen, G.M.H., Meijers, J.M.M., Slangen, J.J.M., Sturmans, F.: Cancer mortality and residence near electricity transmission equipment: a retrospective cohort study. Int. J. Epidemiol. 22, 9–15 (1993)

    Article  Google Scholar 

  16. Miyakoshi, J., Yoshida, M., Shibuya, K., Hiraoka, M.: Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J. Radiat. Res. 41, 293–302 (2000)

    Article  Google Scholar 

  17. Belyaev, I.Y., Matronchik, A.Y., Alipov, Y.D.: The effect of weak static and alternating magnetic fields on the genome conformational state of E. coli cells: the evidence for model of phase modulation of high frequency oscillation. In: Allen, M.J. (ed.) Charge and Field Effects in Biosystems, vol. 4, pp. 174–184. World Scientific, Singapore (1994)

    Google Scholar 

  18. Chang, J.J.: Physical properties of biophotons and their biological functions. Indian J. Exp. Biol. 46, 371–377 (2008)

    Google Scholar 

  19. Binhi, V.: Do naturally occurring magnetic nanoparticles in the human body mediate increased risk of childhood leukaemia with EMF exposure? Int. J. Radiat. Biol. 84, 569–579 (2008)

    Article  Google Scholar 

  20. Nordenson, I., Mild, K.H., Jarventaus, H., Hirvonen, A., Sandstrom, M., Wilen, J., Blix, N., Norppa, H.: Chromosomal aberrations in peripheral lymphocytes of train engine drivers. Bioelectromagnetics 22, 306–315 (2001)

    Article  Google Scholar 

  21. Skyberg, K., Hansteen, I.L., Vistnes, A.I.: Chromosomal aberrations in lymphocytes of employees in transformer and generator production exposed to electromagnetic fields and mineral oil. Bioelectromagnetics 22, 150–160 (2001)

    Article  Google Scholar 

  22. Simko, M., Kriehuber, R., Weiss, D.G., Luben, R.A.: Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and non-transformed human cell lines. Bioelectromagnetics 19, 85–91 (1998)

    Article  Google Scholar 

  23. Simko, M., Kriehuber, R., Lange, S.: Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat. Res. 418, 101–111 (1998)

    Google Scholar 

  24. Nordenson, I., Mild, K.H., Andersson, G., Sandstrom, M.: Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields. Bioelectromagnetics 15, 293–301 (1994)

    Article  Google Scholar 

  25. Pan, F., Wang, W., Shi, L.: Application of Umu Test in Environmental science. Journal of Anhui. Agri. Sci. 35, 2208–2210 (2007)

    Google Scholar 

  26. Fojt, L., Strašák, L., Vetterl, V., Šmarda, J.: Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63, 337–341 (2004)

    Article  Google Scholar 

  27. Galvanoskis, J., Sandblom, J.: Periodic forcing of intracellular calcium oscillators. Theoretical studies of the effects of low-frequency fields on the magnitude of oscillations. Bioelectrochem. Bioenerg. 46, 161–174 (1998)

    Article  Google Scholar 

  28. Belyaev, I.Y., Alipov, E.D.: Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochimica. et. Biophysica. Acta 1526, 269–276 (2001)

    Article  Google Scholar 

  29. Taylor, A.L., Trotter, C.D.: A linkage map and gene catalog for Escherichia coli. In: King, R.C. (ed.) Handbook of Genetics, 1st edn., pp. 135–156. Plenum Press, New York (1974)

    Google Scholar 

  30. Buechner, M., Delcour, A.H., Martinac, B., Adler, J., Kung, C.: Ion channel activities in the Escherichia coli outer membrane. Biochimica. et. Biophysica. Acta 1024, 111–121 (1990)

    Article  Google Scholar 

  31. Kwee, S., Raskmark, P.: Changes in cell proliferation due to environmental non-ionizing radiation 1. ELF electromagnetic fields. Bioeleetrochemistry and Bioenergetics 36, 109–114 (1995)

    Article  Google Scholar 

  32. Olsson, G., Belyaev, I.Y., Helleday, T., Ringdahl, M.H.: ELF magnetic field affects proliferation of SPD8/V79 Chinese hamster cells but does not interact with intrachromosomal recombination. Mutation Research 493, 55–66 (2001)

    Google Scholar 

  33. Blan, M., Goodman, R.: Electromagnetic fields stress living cells. Pathophysiology 16, 71–78 (2009)

    Article  Google Scholar 

  34. Blank, M., Soo, L.: Surface free energy as the potential in oligomeric equilibria: prediction of hemoglobin disaggregation constant. Bioelectrochem. Bioenerg. 17, 349–360 (1987)

    Article  Google Scholar 

  35. Blank, M., Soo, L.: Enhancement of cytochrome oxidase activity in 60 Hz magnetic fields. Bioelectrochem. Bioenerg. 45, 253–259 (1998)

    Article  Google Scholar 

  36. Blank, M., Soo, L.: Electromagnetic acceleration of the BelousovZhabotinski reaction. Bioelectrochem. 61, 93–97 (2003)

    Article  Google Scholar 

  37. Lai, H., Singh, N.P.: Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromagn. Biol. Med. 24, 23–29 (2005)

    Article  Google Scholar 

  38. Blank, M.: Protein and DNA interactions with electromagnetic fields. Electromagn. Biol. Med. 28, 3–23 (2008)

    Article  Google Scholar 

  39. Wan, C., Fiebig, T., Kelley, S.O., Treadway, C.R., Barton, J.K.: Femtosecond dynamics of DNA-mediated electron transfer. Proc. Nat. Acad. Sci. USA 96, 6014–6019 (1999)

    Article  Google Scholar 

  40. Blank, M., Goodman, R.: Initial interactions in electromagnetic field-induced biosynthesis. J. Cell Physiol. 199, 359–363 (2004)

    Article  Google Scholar 

  41. Blank, M., Goodman, R.: A mechanism for stimulation of biosynthesis by electromagnetic fields: charge transfer in DNA and base pair separation. J. Cell Physiol. 214, 20–26 (2008)

    Article  Google Scholar 

  42. Marais, R., Wynne, J., Treisman, R.: The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobin Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Gu, S., Lu, G., Wu, Y., Li, S., Zhao, Y., Li, K. (2012). A Study of the Interaction between ELF-EMF and Bacteria. In: Hu, W. (eds) Advances in Electric and Electronics. Lecture Notes in Electrical Engineering, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28744-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28744-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28743-5

  • Online ISBN: 978-3-642-28744-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics