Skip to main content

Identity-Based Trace and Revoke Schemes

  • Conference paper
Provable Security (ProvSec 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6980))

Included in the following conference series:

Abstract

Trace and revoke systems allow for the secure distribution of digital content in such a way that malicious users, who collude to produce pirate decoders, can be traced back and revoked from the system. In this paper, we consider such schemes in the identity-based setting, by extending the model of identity-based traitor tracing scheme by Abdalla et al. to support revocation.

The proposed constructions rely on the subset cover framework. We first propose a generic construction which transforms an identity-based encryption with wildcard (WIBE) of depth log(N) (N being the number of users) into an identity-based trace and revoke scheme by relying on the complete subtree framework (of depth log(N)). This leads, however, to a scheme with log(N) private key size (as in a complete subtree scheme). We improve this scheme by introducing generalized WIBE (GWIBE) and propose a second construction based on GWIBE of two levels. The latter scheme provides the nice feature of having constant private key size (3 group elements).

In our schemes, we also deal with advanced attacks in the subset cover framework, namely pirate evolution attacks (PEvoA) and pirates 2.0. The only known strategy to protect schemes in the subset cover framework against pirate evolution attacks was proposed by Jin and Lotspiech but decreases seriously the efficiency of the original schemes: each subset is expanded to many others subsets; the total number of subsets to be used in the encryption could thus be O(N 1/b) to prevent a traitor from creating more than b generations. Our GWIBE based scheme, resisting PEvoA better than the Jin and Lotspiech’s method. Moreover, our method does not need to change the partitioning procedure in the original complete subtree scheme and therefore, the resulted schemes are very competitive compared to the original scheme, with r log(N/r) logN –size ciphertext and constant size private key.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AACS LA. AACS Specifications, http://www.aacsla.com/specifications/

  2. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.: Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 361–376. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Asano, T., Kamio, K.: A tree based one-key broadcast encryption scheme with low computational overhead. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 89–100. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Berkovits, S.: How to broadcast a secret (rump session). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  7. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Billet, O., Phan, D.H.: Traitors collaborating in public: Pirates 2.0. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 189–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Boneh, D., Franklin, M.K.: An efficient public key traitor scheme (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM CCS 2008, pp. 501–510. ACM Press, New York (2008)

    Google Scholar 

  13. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data (extended abstract). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465. Springer, Heidelberg (1995)

    Google Scholar 

  14. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: ACM CCS 2006, pp. 211–220. ACM Press, New York (2006)

    Google Scholar 

  15. Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs for multicast encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 459–474. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

    Google Scholar 

  17. D’Arco, P., Perez del Pozo, A.L.: Fighting Pirates 2.0. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 359–376. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  23. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Jin, H., Lotspiech, J.: Defending against the pirate evolution attack. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 147–158. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Kiayias, A., Pehlivanoglu, S.: Pirate evolution: How to make the most of your traitor keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for dynamic collaborative groups. In: ACM CCS 2000, pp. 235–244. ACM Press, New York (2000)

    Google Scholar 

  28. Kurosawa, K., Desmedt, Y.G.: Optimum traitor tracing and asymmetric schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  29. Lubicz, D., Sirvent, T.: Attribute-based broadcast encryption scheme made efficient. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 325–342. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  32. Phan, D.H., Trinh, V.C.: Identity-based trace and revoke schemes. In: Boyen, X., Chen, X. (eds.) Provsec 2011. LNCS, vol. 6980, pp. 208–225. Springer, Heidelberg (2011)

    Google Scholar 

  33. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. Cryptology ePrint Archive, Report 2007/217 (2007)

    Google Scholar 

  34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  35. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using one-way function trees. IEEE Trans. Softw. Eng. 29(5), 444–458 (2003)

    Article  Google Scholar 

  36. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues and architectures. In: RFC 2627 (1999)

    Google Scholar 

  37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key graphs. In: Proceedings of ACM SIGCOMM, Vancouver, BC, Canada, August 31 - September 4, pp. 68–79 (1998)

    Google Scholar 

  39. Zhao, X., Zhang, F.: Traitor tracing against public collaboration. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 302–316. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phan, D.H., Trinh, V.C. (2011). Identity-Based Trace and Revoke Schemes. In: Boyen, X., Chen, X. (eds) Provable Security. ProvSec 2011. Lecture Notes in Computer Science, vol 6980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24316-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24316-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24315-8

  • Online ISBN: 978-3-642-24316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics