Skip to main content

Satisfiability of Systems of Equations of Real Analytic Functions Is Quasi-decidable

  • Conference paper
Mathematical Foundations of Computer Science 2011 (MFCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

Abstract

In this paper we consider the problem of checking whether a system of equations of real analytic functions is satisfiable, that is, whether it has a solution. We prove that there is an algorithm (possibly non-terminating) for this problem such that (1) whenever it terminates, it computes a correct answer, and (2) it always terminates when the input is robust. A system of equations of robust, if its satisfiability does not change under small perturbations. As a basic tool for our algorithm we use the notion of degree from the field of (differential) topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberth, O.: Computation of topological degree using interval arithmetic, and applications. Mathematics of Computation 62(205), 171–178 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boult, T.E., Sikorski, K.: Complexity of computing topological degree of lipschitz functions in n dimensions. J. Complexity 2, 44–59 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caviness, B.F., Johnson, J.R. (eds.): Quantifer Elimination and Cylindrical Algebraic Decomposition. Springer, Heidelberg (1998)

    Google Scholar 

  4. Collins, P.: Computability and representations of the zero set. Electron. Notes Theor. Comput. Sci. 221, 37–43 (2008)

    Article  Google Scholar 

  5. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. International Journal of Foundations of Computer Science (IJFCS) 18(1), 63–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  7. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Frommer, A., Lang, B.: Existence tests for solutions of nonlinear equations using Borsuk’s theorem. SIAM Journal on Numerical Analysis 43(3), 1348–1361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hirsch, M.: Differential topology. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  10. Kearfott, R., Dian, J., Neumaier, A.: Existence verification for singular zeros of complex nonlinear systems. SIAM J. Numer. Anal. 38(2), 360–379 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kearfott, R.B.: On existence and uniqueness verification for non-smooth functions. Reliable Computing 8(4), 267–282 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krantz, S., Parks, H.R.: A Primer of Real Analytic Functions. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  13. Milnor, J.W.: Topology from the Differential Viewpoint. Princeton Univ. Press, Princeton (1997)

    Google Scholar 

  14. Munkres, J.: Topology. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  15. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  16. O’Regan, D., Cho, Y., Chen, Y.Q.: Topological Degree Theory and Applications. Chapman & Hall, Boca Raton (2006)

    MATH  Google Scholar 

  17. Ratschan, S.: Quantified constraints under perturbations. Journal of Symbolic Computation 33(4), 493–505 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic 7(4), 723–748 (2006)

    Article  MathSciNet  Google Scholar 

  19. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 397–408. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Rump, S.M.: A note on epsilon-inflation. Reliable Computing 4, 371–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sergeraert, F.: Introduction to combinatorial homotopy theory. In: Summer School and Conference Mathematics, Algorithms and Proofs, Lecture notes (2008), http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Trieste-LectureNotes.pdf

  22. Stenger, F.: Computing the topological degree of a mapping in R n. Numerische Mathematik 25, 23–38 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. of California Press, Berkeley (1951) (also in [3])

    MATH  Google Scholar 

  24. Weihrauch, K.: Introduction to Computable Analysis. Texts in Theoretical Computer Science. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Franek, P., Ratschan, S., Zgliczynski, P. (2011). Satisfiability of Systems of Equations of Real Analytic Functions Is Quasi-decidable. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics