Skip to main content

Generalized Mersenne Prime Number and Its Application to Random Number Generation

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2002

Summary

A Mersenne prime number is a prime number of the form 2k — 1. In this paper, we consider a Generalized Mersenne Prime (GMP) which is of the form R(k,p) = (p k-l)/(p - 1), where k,p and R(k,p) are prime numbers. For such a GMP, we then propose a much more efficient search algorithm for a special form of Multiple Recursive Generator (MRG) with the property of an extremely large period length and a high dimension of equidistribution. In particular, we find that (p k - l)/(p - 1) is a GMP, for k = 1511 and p = 2147427929. We then find a special form of MRG with order k = 1511 and modulus p = 2147427929 with the period length 1014100.5.Many other efficient and portable generators with various k ≤ 1511 are found and listed. Finally, for such a GMP and generator, we propose a simple and quick method of generating maximum period MRGs with the same order k. The readers are advised not to confuse GMP defined in this paper with other generalizations of the Mersenne Prime. For example, the term “Generalized Mersenne Number” (GMN) is used in Appendix 6.1 of FIPS-186-2, a publication by National Institute of Standards and Technology (NIST). In that document, GMN is a prime number that can be written as 2k ± 1 plus or minus a few terms of the form 2r.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alanen, J. O., AND Knuth, D. E. 1964. Tables of finite fields. Sankhyā, Series A 26, 305–328.

    MathSciNet  MATH  Google Scholar 

  2. Crandall, R., AND Pomerance, C. 2000. Prime Numbers-A Computational Perspective. Springer-Verlag, New York, NY.

    Google Scholar 

  3. Deng, L. Y., Chan, K. H. AND Yuan, Y. 1994. Design and implementation of random number generators for multiprocessor systems. International Journal of Modelling and Simulation 14, No. 4, 185–191.

    Google Scholar 

  4. Deng, L. Y., AND Lin, D. K. J. 2000. Random number generation for the new century. American Statistician 54, 145–150.

    Google Scholar 

  5. Deng, L. Y., AND Xu, H. 2003. A system of high-dimensional, efficient, longcycle and portable uniform random number generators, ACM Transactions on Modeling and Computer Simulation, to appear.

    Google Scholar 

  6. Golomb, S. W. 1967. Shift Register Sequences. Holden-Day, San Francisco, CA.

    MATH  Google Scholar 

  7. Grube, A. 1973. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Z. für angewandte Math, und Mechanik 53, 223–225.

    MathSciNet  Google Scholar 

  8. Knuth, D. E. 1998. The Art of Computer Programming, Vol 2: Seminumerical Algorithms. 3rd ed. Addison-Wesley, Reading, MA.

    Google Scholar 

  9. L’ECUYER, P. 1999. Good parameter sets for combined multiple recursive random number generators. Operations Research 47, 159–164.

    Article  MATH  Google Scholar 

  10. L’Ecuyer, P., AND Blouin, F. 1988. Linear conguential generators of order k > 1. 1988 Winter Simulation Conference Proceedings, 432–439.

    Google Scholar 

  11. L’Ecuyer, P., Blouin, F., AND Couture, R. 1993. A search for good multiple recursive linear random number generators. ACM Transactions on Mathematical Software 3, 87–98.

    MATH  Google Scholar 

  12. Lehmer, D. H. 1951. Mathematical methods in large-scale computing units. Proceedings of the Second Symposium on Large Scale Digital Computing Machinery, Harvard University Press, Cambridge, MA, 141–146.

    Google Scholar 

  13. Lidl, R., AND Niederreiter, H. 1986. Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  14. Matsumoto, M., AND Nishimura, T. 1998. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8, 3–20.

    Article  MATH  Google Scholar 

  15. NIST 2000. Digital signature standards. Publication FIPS-186-2, National Institute of Standards and Technology (NIST), 2000. See http://csrc.nist.gov/csrc/fedstandards.html.

  16. Zierler, N. 1959. Linear recurring sequences. J. SIAM 7, 31–48.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, LY. (2004). Generalized Mersenne Prime Number and Its Application to Random Number Generation. In: Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18743-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18743-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20466-4

  • Online ISBN: 978-3-642-18743-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics