Skip to main content

Heisenberg’s Uncertainty and Matter Wave Interferometry with Large Molecules

  • Chapter
Fundamental Physics — Heisenberg and Beyond
  • 302 Accesses

Abstract

Quantum physics has by now reached an impressive theoretical and experimental maturity. And still, it puzzles the classically educated mind that quantum physics exhibits various dualities, like for instance the wave-particle duality, which are in contradiction to our daily experience: Heisenberg’s uncertainty relation between conjugate variables is a well-known formulation of this fact and it appears therefore appropriate to contribute to an issue in commemoration of Heisenberg’s 100th birthday with a review of recent wave-particle duality experiments with large molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. de Broglie. Waves and quanta. Nature, 112, 540–540 (1923).

    Article  ADS  Google Scholar 

  2. C.J. Davisson and L.H. Germer. The scattering of electrons by a single crystal of nickel. Nature, 119, 558–560 (1927).

    Article  ADS  Google Scholar 

  3. H. Rauch and A. Werner. Neutron Interferometry, Lessons in Experimental Quantum Mechanics. Oxford Univ. Press (2000).

    Google Scholar 

  4. I. Estermann and O. Stern. Beugung von Molekularstrahlen. Z. Phys. 61, 95–125 (1930).

    Article  ADS  Google Scholar 

  5. S. Chu. The manipulation of neutral particles. Rev. Mod. Phys. 70(3), 685–706 (1998).

    Article  ADS  Google Scholar 

  6. C.N. Cohen-Tannoudji. Manipulating atoms with photons. Rev. Mod. Phys. 70(3), 707–719 (1998).

    Article  ADS  Google Scholar 

  7. W.D. Phillips. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70(3), 721–741 (1998).

    Article  ADS  Google Scholar 

  8. E.A. Cornell and C. E. Wieman. Nobel lecture, Bose-Einstein condensation in a dilute gas, The first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    Article  ADS  Google Scholar 

  9. S. Martellucci, A.N. Chester, A. Aspect, and M. Inguscio, editors. Bose— Einstein Condensates and Atom Lasers. Plenum, New York (2000).

    Google Scholar 

  10. G. Scoles, D. Bassi, U. Buck, and D. Lainé, eds. Atomic and Molecular Beam Methods, volume I. Oxford University Press (1988).

    Google Scholar 

  11. P. Pillet, A. Crubellier, A. Bleton, O. Dulieu, P. Nosbaum, I. Mourachko, and F. Masnou-Seeuws. Photoassociation in a gas of cold alkali atoms, I. Perturbative quantum approach. J. Phys. B, 30, 2801–2820 (1997).

    ADS  Google Scholar 

  12. J.M. Doyle, B. Friedrich, J. Kim, and D. Patterson. Buffergas loading of atoms and molecules into a magnetic trap. Phys. Rev. A, 52, R2515–2518 (1995).

    Article  ADS  Google Scholar 

  13. H.L. Bethlem, G. Berden, and G. Meijer. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

    Article  ADS  Google Scholar 

  14. H.L. Bethlem, G. Berden, A.J.A. Van Roij, and G. Meijer. Trapping neutral molecules in a traveling potential well. Phys. Rev. Lett. 84, 5744–5747, (2000).

    Article  ADS  Google Scholar 

  15. V. Vuletić and S. Chu. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84(17), 3787–3790 (2000).

    Article  ADS  Google Scholar 

  16. M. Gangl and H. Ritsch. Collective dynamical cooling of neutral particles in a high-q optical cavity. Phys. Rev. A, 61, 011402/1-4 (2000).

    Google Scholar 

  17. M. Gupta and D.R. Herschbach. A mechanical means to produce intense beams of slow molecules. J. Phys. Chem. A 103, 10670–10673 (1999).

    Article  Google Scholar 

  18. M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. Van der Zouw, and A. Zeilinger. Wave-particle duality of c60 molecules. Nature, 401, 680–682 (1999).

    Article  ADS  Google Scholar 

  19. O. Nairz, M. Arndt, and A. Zeilinger. Experimental challenges in fullerene interferometry. J. Mod. Opt. 47, 2811–2821 (2000).

    ADS  Google Scholar 

  20. O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger. Diffraction of complex molecules by structures made of light. Phys. Rev. Lett. 87, 160401–4 (2001).

    Article  ADS  Google Scholar 

  21. X. Yao, T.G. Ruskell, R.K. Workman, D. Sarid, and D. Chen. Intramolecular features of individual C 60 molecules on Si(100)-(2x1) surfaces observed by scanning tunneling microscopy. Surf. Sci. Lett. 36, 786 (1996).

    Google Scholar 

  22. M. Born and E. Wolf. Principles of Optics. Pergamon Press, (1993).

    Google Scholar 

  23. O. Nairz, M. Arndt, and A. Zeilinger. Quantum interference experiments with large molecules. Am. J. Phys., in print (3/2003).

    Google Scholar 

  24. M. Arndt, O. Nairz, J. Petschinka, and A. Zeilinger. High contrast interference with C 60 and C 70. C.R. Acad. Sci. Paris, t. 2, Série IV, 1–5, (2001).

    Google Scholar 

  25. R.E. Grisenti, W. Schöllkopf, J.P. Toennies, G.C. Hegerfeldt, and T. Köhler. Determination of atom-surface van der Waals potentials from transmissiongrating diffraction intensities. Phys. Rev. Lett. 83, 1755 (1999).

    Article  ADS  Google Scholar 

  26. R. Brüh l, P. Fouquet, R.E. Grisenti, J.P. Toennies, G.C. Hegerfeldt, T. Köhler, M. Stoll, and C. Walter. The van der Waals potential between metastable atoms and solid surfaces, Novel diffraction experiments vs. theory. Europhys. Lett. 59, 357 (2002).

    Article  ADS  Google Scholar 

  27. J.F. Clauser. De Broglie-wave interference of small rocks and live viruses. In R.S. Cohen, M. Horne, and J. Stachel, editors, Experimental Metaphysics. Kluwer Academic (1997).

    Google Scholar 

  28. J.F. Clauser and S. Li. Talbot-von Lau atom interferometry with cold slow potassium. Phys. Rev. A, 49, R2213–R2216 (1994).

    Article  ADS  Google Scholar 

  29. B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger. Matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002).

    Article  Google Scholar 

  30. K. Patorski. Self-imaging and its applications. In E. Wolf, editor, Progress in Optics XXVII, 2-108. Elsevier Science Publishers B.V. Amsterdam (1989).

    Google Scholar 

  31. B. Brezger, M. Arndt, and A. Zeilinger. Concepts for near-field interferometers with large molecules. J. Opt. B. accepted (2002).

    Google Scholar 

  32. M. Arndt, O. Nairz, and A. Zeilinger. Interferometry with macromolecules: Quantum paradigms tested in the mesoscopic world, p. 333–351; in R. Bertlmann and A. Zeilinger, editors, Quantum [Un] Speakables. Springer, Berlin (2002).

    Google Scholar 

  33. H.B.G. Casimir and D. Polder. The influence of retardation on the London van der Waals forces. Phys. Rev. 73, 360 (1948).

    Article  ADS  MATH  Google Scholar 

  34. G.C. Ghirardi, A. Rimini, and T. Weber. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D, 470–491 (1986).

    Google Scholar 

  35. R. Penrose. On gravitys role in quantum state reduction. Gen. Rel. Grav. 28, 581–600 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arndt, M., Zeilinger, A. (2004). Heisenberg’s Uncertainty and Matter Wave Interferometry with Large Molecules. In: Buschhorn, G.W., Wess, J. (eds) Fundamental Physics — Heisenberg and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18623-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18623-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62203-8

  • Online ISBN: 978-3-642-18623-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics