Skip to main content

A Planar Linear Arboricity Conjecture

  • Conference paper
Algorithms and Complexity (CIAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6078))

Included in the following conference series:

Abstract

The linear arboricity la(G) of a graph G is the minimum number of linear forests (graphs where every connected component is a path) that partition the edges of G. In 1984, Akiyama et al. [1] stated the Linear Arboricity Conjecture (LAC), that the linear arboricity of any simple graph of maximum degree Δ is either \(\big \lceil \tfrac{\Delta}{2} \big \rceil\) or \(\big \lceil \tfrac{\Delta+1}{2} \big \rceil\). In [14,15] it was proven that LAC holds for all planar graphs.

LAC implies that for Δ odd, \({\rm la}(G)=\big \lceil \tfrac{\Delta}{2} \big \rceil\). We conjecture that for planar graphs this equality is true also for any even Δ ≥ 6. In this paper we show that it is true for any Δ ≥ 10, leaving open only the cases Δ= 6, 8.

We present also an O(nlogn) algorithm for partitioning a planar graph into max {la(G), 5} linear forests, which is optimal when Δ ≥ 9.

Supported in part by bilateral project BI-PL/08-09-008. M. Cygan and Ł. Kowalik were supported in part by Polish Ministry of Science and Higher Education grant N206 355636.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: Cyclic and acyclic invariants. Math. Slovaca. 30, 405–417 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs IV: Linear arboricity. Networks 11, 69–72 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: The linear arboricity of graphs. Israel Journal of Mathematics 62(3), 311–325 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Teague, V., Wormald, N.C.: Linear arboricity and linear k-arboricity of regular graphs. Graphs and Combinatorics 17(1), 11–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cole, R., Kowalik, Ł.: New linear-time algorithms for edge-coloring planar graphs. Algorithmica 50(3), 351–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cole, R., Kowalik, Ł., Škrekovski, R.: A generalization of Kotzig’s theorem and its application. SIAM Journal on Discrete Mathematics 21(1), 93–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Kowalik, Ł., Lužar, B.: A planar linear arboricity conjecture. arXiv.org e-Print archive, arXiv:0912.5528v1 (2009)

    Google Scholar 

  8. Enomoto, H., Péroche, B.: The linear arboricity of some regular graphs. J. Graph Theory 8, 309–324 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guldan, F.: The linear arboricity of 10-regular graphs. Math. Slovaca. 36(3), 225–228 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Harary, F.: Covering and packing in graphs I. Ann. N.Y. Acad. Sci. 175, 198–205 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peroche, B.: Complexity of the linear arboricity of a graph (In French). RAIRO Oper. Res. 16, 125–129 (1982) (in French)

    Article  MathSciNet  Google Scholar 

  13. Vizing, V.G.: Critical graphs with a given chromatic number. Diskret. Analiz 5, 9–17 (1965)

    Google Scholar 

  14. Wu, J.L.: On the linear arboricity of planar graphs. J. Graph Theory 31, 129–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, J.L., Wu, Y.W.: The linear arboricity of planar graphs of maximum degree seven is four. J. Graph Theory 58(3), 210–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, J.L., Hou, J.F., Liu, G.Z.: The linear arboricity of planar graphs with no short cycles. Theor. Comput. Sci. 381(1-3), 230–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, J.L., Hou, J.F., Sun, X.Y.: A note on the linear arboricity of planar graphs without 4-cycles. In: International Symposium on Operations Research and Its Applications, pp. 174–178 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cygan, M., Kowalik, Ł., Lužar, B. (2010). A Planar Linear Arboricity Conjecture. In: Calamoneri, T., Diaz, J. (eds) Algorithms and Complexity. CIAC 2010. Lecture Notes in Computer Science, vol 6078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13073-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13073-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13072-4

  • Online ISBN: 978-3-642-13073-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics