Skip to main content

Zusammenfassung

Unter Notfalltransfusion ist die aus vitaler Indikation akut durchgeführte Bluttransfusion zu verstehen. Diese Situation ist gegeben, wenn

  • ein akuter Blutverlust eine Gefährdung des Patienten herbeigeführt hat, sodass die sofortige Transfusion von Blut und Blutkomponenten notwendig ist oder

  • akut ein evtl. lebensrettender Eingriff notwendig wird, bei dem ein großer Blutverlust zu erwarten ist.

Die Notfalltransfusion erfordert die schnelle Bereitstellung von kompatiblen Blutpräparaten und/oder schnelle Vorbereitung perioperativer autologer Hämotherapieverfahren. Häufig, aber nicht zwangsläufig, impliziert die Notfalltransfusion eine Massivtransfusion.Die Massivtransfusion wird meist so definiert, dass innerhalb von 24 h mindestens ein Äquivalent des normalen Blutvolumens des betroffenen Patienten durch Blut und Blutkomponenten ersetzt wird [100]. Das entspricht beim Erwachsenen etwa der Menge von ≥10 Erythrozytenkonzentraten (EK). Die meisten Studien über die Massivtransfusion basieren auf dieser Voraussetzung. Die Fortschritte der Intensivmedizin und die Qualitätsverbesserung der verwendeten Blutpräparate lassen diese Definition heute jedoch nicht mehr sinnvoll erscheinen. Die später zu besprechenden spezifischen Risiken der Massivtransfusion werden nur bei schnellerer Transfusion (1 Blutvolumen in 3–4 h [16]) und/oder größerem Transfusionsvolumen (2 Blutvolumina/24 h [68]) klinisch relevant.Diese Definitionen sind jedoch nur retrospektiv verwertbar. Daher wurde empfohlen, von der Entwicklung einer Massivtransfusion auszugehen, wenn bezogen auf einen Erwachsenen mit normalem Körpergewicht mindestens 4 Erythrozytenkonzentrate innerhalb 1 h transfundiert werden und ein weiterer Blutbedarf zu erwarten ist [20]. Bei der Qualität der heute verwendeten leukozytendepletierten EKs in additiver Lösung sollte auch für diese »Arbeitsdefinition« einer Massivtransfusion eine größere Anzahl von Präparaten (≥5–6 Erythrozytenkonzentrate pro Stunde) für die Massivtransfusion zugrunde gelegt werden. Die Notwendigkeit von Massivtransfusionen kann andererseits auch anhand von »Trauma Score« bzw. klinischen Daten wie z. B. Puls, systolischem Blutdruck, pH oder Hämatokrit vorausgesagt werden [57]. Da bei der Notfalltransfusion v. a. die kurzfristige Versorgung der Patienten mit Blutpräparaten und Blutersatzstoffen oberste Priorität besitzt, wird sich der folgende Abschnitt vordringlich diesem Aspekt widmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Adam S, Karger R, Kretschmer V (2009) Photo-optical methods can lead to clinically relevant overestimation of fibrinogen concentration in plasma diluted with hydroxyethyl starch. Clin Appl Thromb Hemost Oct 14 (Epub ahead of print])

    Google Scholar 

  2. Adam S, Karger R, Kretschmer V (2009) Influence of different hydroxyethyl starch (HES) formulations on fibrinogen measurement in HESdiluted plasma. Clin Appl Thromb Hemost 2009 Jul 17 (Epub ahead of print)

    Google Scholar 

  3. Basran S, Frumento RJ, Cohen A (2006) The association between duration of storage of transfused red blood cells and morbidity and mortality after reoperative cardiac surgery. Anesth Analg 103:15–20

    Article  PubMed  Google Scholar 

  4. Bennett-Guerrero E, Veldman TH, Doctor A, Telen MJ, Ortel TL, Reid S, Mulherin MA, Zhu H, Buck RD, Califf RM, McMahon TJ (2007) Evolution of adverse changes in stored RBCs. Proc Nat Acad Sci USA 104: 17063–17068

    Article  PubMed  CAS  Google Scholar 

  5. Bergmann H (1976) Risiken der Infusions- und Transfusionstherapie. Anästhesiol Inform 17:440

    Google Scholar 

  6. Boffard KD, Riou B, Warren B, et al. (2005) Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma 59:8–15

    Article  PubMed  CAS  Google Scholar 

  7. Bommel J van, de Korte D, Lind A, Siegemund M, Trouwborst A, Verhoeven AJ, Ince C, Henney CP (2001) The effect of the transfusion of stored RBCs on intestinal microvascular oxygenation in the rat. Transfusion 41:1515–1523

    Article  PubMed  Google Scholar 

  8. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB (2008) The ratio of blood products transfused affects mortality in patients receiving massive transfusion at a combat support hospital. Crit Care 12:305

    Article  Google Scholar 

  9. Brown KA, Bissonnette B, McIntyre B (1990) Hyperkalaemia during rapid blood transfusion and hypovolaemic cardiac arrest in children. Can J Anesth 37:747–754

    Article  PubMed  CAS  Google Scholar 

  10. Bundesärztekammer und Paul-Ehrlich-Institut (Hrsg) (2005) Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Hämotherapie). Bundesanzeiger 57

    Google Scholar 

  11. Bundesärztekammer (Hrsg) (2008) Leitlinien zur Therapie mit Blutkomponenten nd Plasmaderivaten, 4. Aufl. Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  12. Carson JL, Terrin ML, Barton FB, et al. (1998) A pilot randomized trial comparing symptomatic vs. hemoglobin-level-driven red blood cell transfusion following hip fracture. Transfusion 38:522–529

    Article  PubMed  CAS  Google Scholar 

  13. Ciavarella D, Reed RL, Counts RB, Baron L, Pavlin E, Heimbach DM, Carrico CJ (1987) Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br J Haematol 67:365–368

    Article  PubMed  CAS  Google Scholar 

  14. Cinat ME, Wallace WC, Nastanski F, Sloan S, Ocariz J, Wilson SE (1999) Improved survival following massive transfusion in patients who have undergone trauma. Archives of surgery: official publication for the Central Surgical Association and the Western Surgical Association 134:964–968

    CAS  Google Scholar 

  15. Collins JA (1974) Problems associated with the massive transfusion of stored blood. Surg 75:274–295

    CAS  Google Scholar 

  16. Collins JA, Knudson MM (1991) Massive transfusion. In: Rossi EC, Simon TL, Moss GS (eds) Transfusion Medicine. Williams and Wilkins, Baltimore, pp 419–427

    Google Scholar 

  17. Cotton BA, Au BK, Nunez TC, Gunter OL, Robertson AM, Young PP (2009) Predefined massive transfusion protocols are associated with a reduction in organ failure and postinjury complications. J Trauma 66:41–48

    Article  PubMed  Google Scholar 

  18. Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico, CJ (1979) Hemostasis in massively transfused trauma patients. Ann Surg 190:91–99

    Article  PubMed  CAS  Google Scholar 

  19. Cosgriff N, Morr EE, Saunaia A, Kenny-Moynihan M, Burch JM, Galloway B (1997) Predicting life-threatening coagulopathy in the massively transfused trauma patient. J Trauma 42:857–862

    Article  PubMed  CAS  Google Scholar 

  20. Crosson JT (1996) Massive transfusion. Clin Lab Med 16:873–882

    PubMed  CAS  Google Scholar 

  21. Duchesne JC, Hunt JP, Wahl G, Marr AB, Wang YZ, Weintraub SE, Wright MJ, McSwain NE Jr. (2008) Review of current blood transfusions strategies in a mature level I trauma center: were we wrong for the last 60 years? J Trauma 65:272–276

    Article  PubMed  Google Scholar 

  22. Dzik W (2008) Fresh blood for everyone? Balancing availability and quality of stored RBCs. Transfus Med 18:260–265

    Article  PubMed  CAS  Google Scholar 

  23. Faringer PD, Mullins RJ, Johnson RL, Trunkey DD (1993) Blood component supplementation during massive transfusion of AS-1 red cells in trauma patient. J Trauma 34:481–485

    Article  PubMed  CAS  Google Scholar 

  24. Ferrara A, MacArthur JD, Wright HK, Modlin IM, McMillen MA (1990) Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg 160:515–518

    Article  PubMed  CAS  Google Scholar 

  25. Geeraedts LM Jr., Demiral H, Schaap NP, Kamphuisen PW, Pompe JC, Frölke JP (2007) «Blind« transfusion of blood products in exsanguinating trauma patients. Resuscitation 73:382–388

    Article  PubMed  Google Scholar 

  26. Gonzalez EA, Moore FA, Holcomb JB, Miller CC, Kozar RA, Todd SR, Cocanour CS, Balldin BC, McKinley BA (2007) fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma 62:112–119

    Article  PubMed  Google Scholar 

  27. Hakala P, Hiippala S, Syrjälä M, Randell T (1999) Massive transfusion exceeding 50 units of plasma poor red cells or whole blood: the survival rate and the occurrence of leukopenia and acidosis. Injury 30:619–622

    Article  PubMed  CAS  Google Scholar 

  28. Hamilton SM (1993) The use of blood in resuscitation. Can J Surg 36:11–14

    Google Scholar 

  29. Harrigan C, Lucas CE, Ledgerwood AM, Walz DA, Mammen EF (1985) Serial changes in primary hemostasis after massive transfusion. Surgery 98:836–844

    PubMed  CAS  Google Scholar 

  30. Hässig A, Collins JA, Högman C, Lundsgaard-Hansen P, Snyder EL, Swank RL, Wenz B (1986) When is the microfiltration of whole blood and red cell concentrates essential? When is it superfluous? International Forum. Vox Sang 50:54–64

    Article  Google Scholar 

  31. Hébert PC, Wells G. Blajchman MA et al. (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340: 409–417

    Article  PubMed  Google Scholar 

  32. Hess JR, Lawson JH (2006) The coagulopathy of trauma versus disseminated intravascular coagulation. J Trauma 60 (6 Suppl):S12–19

    Article  PubMed  Google Scholar 

  33. Howland WS (1978) Kalzium, potassium and pH changes during massive transfusion. In: Nusbacher J (ed) Massive Transfusion. American Association of Blood Banks, Washington DC, pp 17–24

    Google Scholar 

  34. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zazabal LA, Schreiber MA, Gonzalez EA, Pomper GJ, Perkins JG, Spinella PC, Williams KL, Park MS (2008) Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg 248:447–458

    PubMed  Google Scholar 

  35. Hoyt DB, Dutton RP, Hauser CJ, Hess JR, Holcomb JB, Kluger Y, Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T, Bouillon B (2008) Management of coagulopathy in the patients with multiple injuries: result from an international survey of clinical practice. J Trauma 65:755–764

    Article  PubMed  Google Scholar 

  36. Ince C, Sinaasappel M (1999) Microcircular oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  37. Jambor C, Heindl B, Spannagl M, Rolfes C, Dinges GK, Frietsch T (2009) Hämostaseologisches Management beim Polytrauma – Stellenwert der patientennahen diagnostischen Methoden. AINS 44:200–211

    PubMed  Google Scholar 

  38. Kates RA, Finucane BT (1984) Massive transfusion in a neonate. S Med J 77:516–517

    Article  CAS  Google Scholar 

  39. Kost GJ (1993) The significance of ionized Kalzium in cardiac and critical care. Arch Pathol Lab Med 117:890–896

    PubMed  CAS  Google Scholar 

  40. Ketchum L, Hess JR, Hiippala S (2006) Indications for early fresh frozen plasma, cryoprecipitate, and platelet transfusion. J Trauma 60 (6 Suppl):S51–58

    Article  PubMed  Google Scholar 

  41. Khan H, Belsher J, Yilmaz M, Afessa B, Winters JL, Moore SB, Hubmayr RD, Gajic O (2007) Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. Chest 131:1308–1314

    Article  PubMed  Google Scholar 

  42. Koch CG, Li L, Sessler DI (2008) Duration of red cell storage and complications after cardiac surgery. N Engl J Med 358,1229–1239

    Article  PubMed  CAS  Google Scholar 

  43. Kretschmer V, Haas C, Weippert-Kretschmer M (2001) Prevention and therapy of hemostatic disorders in massive transfusion. Infusion Therapy and Transfusion Medicine 28:350–353

    Google Scholar 

  44. Kretschmer V, Daraktchiev A, Bade S, Karger R, Kratzer MA (2004) Does Hemodilution Enhance Coagulability? – Geht Hämodilution mit gesteigerter Hämostase einher? AINS 39:751–756

    PubMed  CAS  Google Scholar 

  45. Kretschmer V, Gombotz H, Rump G (2008) Transfusionsmedizin – Klinische Hämotherapie. Thieme, Stuttgart

    Google Scholar 

  46. Leslie SD, Toy PTCY (1991) Laboratory hemostatic abnormalities in massively transfused patients given red blood cells and crystalloids. Am J Clin Pathol 96:770–773

    PubMed  CAS  Google Scholar 

  47. Levi M, Peters M, Buller HR (2005) Efficacy and safety of recombinant factor VIIa for the treatment of severe bleeding: a systematic review. Crit Care Med:33:883–890

    Article  PubMed  CAS  Google Scholar 

  48. Lier H, Krep H, Schroeder S, Stuber F (2008) Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia and hypothermia on functional hemostasis in trauma. J Trauma 65:951–960

    Article  PubMed  Google Scholar 

  49. Linko K, Tigerstedt I (1984) Hyperpotassemia during massive blood transfusions. Acta Anaesthesiol Scand 28:220–221

    Article  PubMed  CAS  Google Scholar 

  50. Linko K, Saxelin (1986) Electrolyte and acidbase disturbances caused by blood transfusions. Acta Anaesthesiol Scand 30:139–144

    Article  PubMed  Google Scholar 

  51. Lundsgaard-Hansen P, Pappova E (1981) Component therapy of surgical hemorrhage: red cells, plasma substitutes and albumin. Ann Clin Res 13 (Suppl 33):26–38

    PubMed  Google Scholar 

  52. Lundsgaard-Hansen P, Bücher U, Tschirren B, Haase S, Kuske B, Lüdi H, Stankiewicz LA, Hässig A (1978) Red cells and gelatin as the core of a unified program for the national procurement of blood components and derivatives: prediction, performance and impact on supply of albumin and factor VIII. Vox Sang 34:261–275

    Article  PubMed  CAS  Google Scholar 

  53. Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269:3024–3029

    Article  PubMed  CAS  Google Scholar 

  54. Martinowitz U, Segal E, Luboshitz J, Lubetsky A, Ingerslev J, Lynn M (2000) Recombinant activated factor VII for adjunctive hemorrhage control in trauma. J Trauma 51:431–439

    Article  Google Scholar 

  55. McKenna R (2001) Abnormal coagulation in the postoperative period contributing to excessive bleeding. Medical Clinics of North America 85:1277–1310

    Article  PubMed  CAS  Google Scholar 

  56. McNamara JJ, Molot MD, Stremple JF (1970) Screen filtration pressure in combat casualties. Ann Surg 172:334–341

    Article  PubMed  CAS  Google Scholar 

  57. McLaughlin DF, Niles SE, Salinas J, Perkins JG, Cox ED, Wade CE, Holcomb JB (2008) A predictive model for massive transfusion in combat casualty patients patients. J Trauma 64 (2 Suppl):S57–63

    Article  PubMed  Google Scholar 

  58. Miller RD (1986) Blood, blood components, colloid and autotransfusions therapy. In: Miller RD (ed) Anesthesia, vol 2. Churchill Livingstone, New York, pp 1329–1367

    Google Scholar 

  59. Miller RD, Robbins TO, Tong MJ, et al. (1971) Coagulation defects associated with massive blood transfusions. Ann Surg 174:794–801

    Article  PubMed  CAS  Google Scholar 

  60. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Oswald E, Bach C, Schnapka-Koepf M, Inerhofer P (2007) Hemostatic changes after crystalloid or colloid fluid administration during orthopedic surgery. The role of fibrinogen administration. Anesth Analg 105:905–917

    Article  PubMed  CAS  Google Scholar 

  61. Moore FA, Nelson T, McKinley BA, Moore EE, Nathens AB, Rhee P, Puyana JC, Beilman GJ, Cohn SM, StO2 study group (2008) Is there a role for aggressive use of fresh frozen plasma in massive transfusion of civilian trauma patients? Am J Surg 196:948–958

    Article  PubMed  Google Scholar 

  62. Mortelmans Y, Vermant GA, van Aken H (1994) A simple method for calculating component dilution during fluid resuscitation: The Leuven approach. J Clin Anesth 6:279–287

    Article  PubMed  CAS  Google Scholar 

  63. Moseley RV, Doty DB (1970) Death associated with multiple pulmonary emboli soon after battle injury. Ann Surg 171:336–346

    Article  PubMed  CAS  Google Scholar 

  64. Murray DJ, Olson J, Strauss R, Tinker JH (1988) Coagulation changes during packed red cell replacement of major blood loss. Anesthesiology 89:839–845

    Article  Google Scholar 

  65. Oberman HA, Barnes BA, Friedman BA (1978) The risk of abreviating the major crossmatch in urgent or massive transfusion. Transfusion 18:137–141

    Article  PubMed  CAS  Google Scholar 

  66. Office of Medical Applications of Research, National Institutes of Health 1988; JAMA 260:2700–2703

    Article  Google Scholar 

  67. Paul-Ehrlich-Institut (2007) Bekanntmachung der Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Hämotherapie) Änderungen und Ergänzungen 2007. Bundesanzeiger 92:5075–5076

    Google Scholar 

  68. Philipps TF, Souliers G, Wilson RF (1987) Outcome of massive transfusion exceeding two blood volumes in trauma and emergency surgery. J Trauma 27:903–910

    Article  Google Scholar 

  69. Popovsky MA, Moore SB (1985) Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion 25:573–577

    Article  PubMed  CAS  Google Scholar 

  70. Reed RL, Ciavarella D, Heimbach DM, Baron L, Pavlin E, Counts RB, Carrico CJ (1986) Prophylactic platelet administration during massive transfusion. Ann Surg 203: 40–48

    Article  PubMed  Google Scholar 

  71. Reul GJ Jr, Beal AC, Greenberg SD (1974) Protection of the pulmonary microsvasculature by fine scree blood filtration. Chest 66: 4–9

    Article  PubMed  Google Scholar 

  72. Robinson NB, Heimbach DM, Reynolds LO, Pavlin E, Durtschi MB, Riem M, Craig K (1982) Ventilation and perfusion alterations following homologous blood transfusion. Surg 92:183–191

    Google Scholar 

  73. Rohrer MJ, Natale AM (1992) Effect of hypothermia on the coagulation cascade. Crit Care Med 20:1402–1405

    Article  PubMed  CAS  Google Scholar 

  74. Rosario MD, Rumsey EW, Arakaki G, Tanoue RE, McDanal J, McNamara JJ (1978) Blood microaggregates and ultrafilters. J Trauma 18:498–506

    Article  PubMed  CAS  Google Scholar 

  75. Rudolph R, Boyd CR (1990) Massive transfusion: complications and their management. South Med J 83:1065–1070

    Article  PubMed  CAS  Google Scholar 

  76. Scheidegger D, Drop LJ (1984) Ionisiertes Kalcium. Anesthesiologie und Intensivmedizin, vol 163. Springer, Berlin, Heidelberg New York Tokio

    Google Scholar 

  77. Schmidt WF, Kim HC, Tomassini N, Schwartz E (1982) RBC destruction caused by a micropore blood filter. JAMA 248:1629–1632

    Article  PubMed  Google Scholar 

  78. Schmitt HJ, Götz E (1988) Metabolische Störungen durch Bluttransfusionen. Infusionsther 15:254–260

    CAS  Google Scholar 

  79. Schmitt HJ, Lackes S (2000) Massive Transfusion and its influence on oxygen transport and electrolyte balance. Infus Ther Transfus Med 27:68–78

    Google Scholar 

  80. Sinaasappel M, Donkersloot C, van Bommel J, Ince C (1999) PO2 measurements in the rat intestinal microcirculation. Am J Physiol 276 (6 Pt 1):G1515–1520

    PubMed  CAS  Google Scholar 

  81. Smith HM, Farrow SJ, Ackerman JD, Stubbs JR, Sprung J (2008) Cardiac arrest associated with hyperkalemia during red blood cell transfusion: a case of series. Anesth Analg 106:1062–1069

    Article  PubMed  Google Scholar 

  82. Snyder EL, Bookbinder M (1983) Role of microaggregate blood filtration in clinical medicine. Transfusion 23:460–470

    Article  PubMed  CAS  Google Scholar 

  83. Sobel M, Mc Neill PM (1991) Diagnosis and management of intraoperative hemostatic defects. In: Ross EC, Simon TL, Moss GS (eds) Principles of transfusion medicine, Williams and Wilkins, Baltimore, pp 461–469

    Google Scholar 

  84. Sohmer PR (1989) Transfusion therapy in surgery. In: Petz LD, Swisher SN (eds) Clinical practice of transfusion medicine, 2nd edn. Churchill Livingstone, New York, pp 363–400

    Google Scholar 

  85. Söhngen D, Kretschmer V, Franke K, Pelzer H, Walker W (1988) Thawing of fresh frozen plasma with a new microware oven. Transfusion 28:576–580

    Article  PubMed  Google Scholar 

  86. Sperry JL, Ochoa JB, Gunn SR, Alarcon LH, Minei JP, Cuschieri J, Rosengart MR, Maier RV, Billiar TR, Peitzmann AB, Moore EE (2008) An FFP:PRBC transfusion ratio ≥1:1.5 is associated with a lower risk of mortality after massive transfusion. J Trauma 65:986–993

    Article  PubMed  Google Scholar 

  87. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Niles SE, McLaughlin DF, Wade CE, Holcomb JB (2008) Effect of plasma and red blood cell transfusions on survival in patients with combat related traumatic injuries. J Trauma 64 (2 Suppl):S69–77

    Article  PubMed  Google Scholar 

  88. Spinella PC, Perkins JG, McLaughlin DF, Niles SE, Grathwohl KW, Beekley AC, Salinas J, Mehta S, Wade CE, Holcomb JB (2008) The effect of recombinant activated factor VII on mortality in combat-related casualties with severe trauma and massive transfusion. J Trauma 64:286–293

    Article  PubMed  Google Scholar 

  89. Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, Hess JR, Dubick MA, Simon CD, Beekley AC, Wolf SE, Wade CE, Holcomb JB (2008) The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma 64 (2 Suppl):S79–85

    Article  PubMed  CAS  Google Scholar 

  90. Stoops CM (1983) Acute hyperkalemia associated with massive blood replacement. Anesth Analg 62:1044

    Article  PubMed  CAS  Google Scholar 

  91. Takaori M, Nakajo N, Ishii T (1977) Changes of pulmonary function following transfusion of stored blood. Transfusion 17:615–620

    Article  PubMed  CAS  Google Scholar 

  92. Thomas R, Hessel EA, Harker LA, Sands MP, Dillard DH (1981) Platelet function during and after deep surface hypothermia. J Surg Res 31:314–318

    Article  PubMed  CAS  Google Scholar 

  93. Tigerstedt I, Sivulainen S (1982) Massive bleeding and hyperpotassemia: a case report. Ann Chir Gynaecol 71:175–177

    PubMed  CAS  Google Scholar 

  94. Tremblay LN, Feliciano DV, Rozycki GS (2002) Assessment of initial base deficit as a predictor of outcome: mechanism of injury does make a difference. Am Surg 68:689–693

    PubMed  Google Scholar 

  95. Umlas J, Sakhuja R (1975) The effect on blood coagulation of the exclusive use of transfusions of frozen red cells during and after cardiopulmonary bypass. J Thorac Cardiovasc Surg 70:519–523

    PubMed  CAS  Google Scholar 

  96. Valeri CR, Cassidy G, Khuri S, Feingold H, Ragno G, Altschule MD (1987) Hypothermia-induced reversible platelet dysfunction. Ann Surg 205:175–181

    Article  PubMed  CAS  Google Scholar 

  97. Van de Watering L, Lorinser J, Versteegh M, Westendord R Brand A (2006) Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients. Transfusion 46:1712–1718

    Article  PubMed  Google Scholar 

  98. Velik-Salchner C, Haas T, Innerhofer P, Streif W, Nussbaumer W, Klingler A, Klima G, Martinowitz U, Fries D (2007) The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost 5:1019–1025

    Article  PubMed  CAS  Google Scholar 

  99. Wenz B (1993) Massive blood transfusion: The blood bank perspective. Transfus Sci 14:353–359

    Article  PubMed  CAS  Google Scholar 

  100. Widman FK (ed) (1990) Technical manual of the American Association of Blood Banks, 10th edn. Arlington, VA

    Google Scholar 

  101. Wu WC, Rathore SS, Wang Y, Radford MJ, Krumholz HM (2001) Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med 345:1230–1236

    Article  PubMed  CAS  Google Scholar 

  102. Zander R (2002) Base Excess und Laktatkonzentration von Infusionslösungen und Blutprodukten. Anästhesiol Intensivmed Notfallmed Schmerzther 37:359–363

    Article  PubMed  CAS  Google Scholar 

  103. Zander R (2008) Kontroversen zur Volumen- und Hämotherapie der Massivtransfusion. www.physioklin.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kretschmer, V., Weippert-Kretschmer, M. (2010). Notfall- und Massivtransfusion. In: Kiefel, V., Mueller-Eckhardt, C. (eds) Transfusionsmedizin und Immunhämatologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12765-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12765-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12764-9

  • Online ISBN: 978-3-642-12765-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics