Skip to main content

mpscan: Fast Localisation of Multiple Reads in Genomes

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

Abstract

With Next Generation Sequencers, sequence based transcriptomic or epigenomic assays yield millions of short sequence reads that need to be mapped back on a reference genome. The upcoming versions of these sequencers promise even higher sequencing capacities; this may turn the read mapping task into a bottleneck for which alternative pattern matching approaches must be experimented. We present an algorithm and its implementation, called mpscan, which uses a sophisticated filtration scheme to match a set of patterns/reads exactly on a sequence. mpscan can search for millions of reads in a single pass through the genome without indexing its sequence. Moreover, we show that mpscan offers an optimal average time complexity, which is sublinear in the text length, meaning that it does not need to examine all sequence positions. Comparisons with BLAT-like tools and with six specialised read mapping programs (like bowtie or zoom) demonstrate that mpscan also is the fastest algorithm in practice for exact matching. Our accuracy and scalability comparisons reveal that some tools are inappropriate for read mapping. Moreover, we provide evidence suggesting that exact matching may be a valuable solution in some read mapping applications. As most read mapping programs somehow rely on exact matching procedures to perform approximate pattern mapping, the filtration scheme we experimented may reveal useful in the design of future algorithms. The absence of genome index gives mpscan its low memory requirement and flexibility that let it run on a desktop computer and avoids a time-consuming genome preprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, J., Porreca, G., Song, L., Greenway, S., Gorham, J., Church, G., Seidman, C., Seidman, J.: Polony Multiplex Analysis of Gene Expression (PMAGE) in Mouse Hypertrophic Cardiomyopathy. Science 316(5830), 1481–1484 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, D., Mortazavi, A., Myers, R., Wold, B.: Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science 316(5830), 1497–1502 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z., Furey, T.S., Crawford, G.E.: High-Resolution Mapping and Characterization of Open Chromatin across the Genome. Cell 132, 311–322 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schones, D., Zhao, K.: Genome-wide approaches to studying chromatin modifications. Nat. Rev. Genet. 9(3), 179–191 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Mardis, E.R.: ChIP-seq: welcome to the new frontier. Nat. Methods 4(8), 613–614 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O’Keeffe, S., Haas, S., Vingron, M., Lehrach, H., Yaspo, M.L.: A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome. Science 321(5891), 956–960 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K.: High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 129(4), 823–837 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings - Practical on-line search algorithms for texts and biological sequences. Cambridge Univ. Press, Cambridge (2002)

    Book  Google Scholar 

  9. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008) (in press)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, R., Li, Y., Kristiansen, K., Wang, J.: SOAP: short oligonucleotide alignment program. Bioinformatics 24(5), 713–714 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Smith, A., Xuan, Z., Zhang, M.: Using quality scores and longer reads improves accuracy of solexa read mapping. BMC Bioinformatics 9(1), 128 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biology 10(3), R25 (2009)

    Article  Google Scholar 

  13. Jiang, H., Wong, W.H.: Seqmap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24(20), 2395–2396 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saha, S., Sparks, A., Rago, C., Akmaev, V., Wang, C., Vogelstein, B., Kinzler, K., Velculescu, V.: Using the transcriptome to annotate the genome. Nat. Biotech. 20(5), 508–512 (2002)

    Article  CAS  Google Scholar 

  15. Philippe, N., Boureux, A., Tarhio, J., Bréhélin, L., Commes, T., Rivals, E.: Using reads to annotate the genome: influence of length, background distribution, and sequence errors on prediction capacity. Nucleic Acids Research (2009), doi:10.1093/nar/gkp492

    Google Scholar 

  16. Kent, J.W.: BLAT—The BLAST-Like Alignment Tool. Genome Res. 12(4), 656–664 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. of Computational Biology 7(1-2), 203–214 (2000)

    Article  CAS  Google Scholar 

  18. Ning, Z., Cox, A., Mulikin, J.: SSAHA: A Fast Search Method for large DNA Databases. Genome Res. 11, 1725–1729 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iseli, C., Ambrosini, G., Bucher, P., Jongeneel, C.: Indexing Strategies for Rapid Searches of Short Words in Genome Sequences. PLoS ONE 2(6), e579 (2007)

    Article  Google Scholar 

  20. Lin, H., Zhang, Z., Zhang, M.Q., Ma, B., Li, M.: ZOOM! Zillions of oligos mapped. Bioinformatics 24(21), 2431–2437 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kharchenko, P., Tolstorukov, M.Y., Park, P.J.: Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotech. 26(12), 1351–1359 (2008)

    Article  CAS  Google Scholar 

  22. Salmela, L., Tarhio, J., Kytöjoki, J.: Multipattern string matching with q-grams. ACM Journal of Experimental Algorithmics 11 (2006)

    Google Scholar 

  23. Navarro, G., Fredriksson, K.: Average complexity of exact and approximate multiple string matching. Theoretical Computer Science 321(2-3), 283–290 (2004)

    Article  Google Scholar 

  24. Faulkner, G., Forrest, A., Chalk, A., Schroder, K., Hayashizaki, Y., Carninci, P., Hume, D., Grimmond, S.: A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91, 281–288 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Kucherov, G., Noé, L., Roytberg, M.: Multiseed Lossless Filtration. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(1), 51–61 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Ma, B., Li, M.: On the complexity of the spaced seeds. J. of Computer and System Sciences 73(7), 1024–1034 (2007)

    Article  Google Scholar 

  27. Nicolas, F., Rivals, E.: Hardness of optimal spaced seed design. J. of Computer and System Sciences 74, 831–849 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivals, E., Salmela, L., Kiiskinen, P., Kalsi, P., Tarhio, J. (2009). mpscan: Fast Localisation of Multiple Reads in Genomes. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics