Skip to main content

Proof Systems for a Gödel Modal Logic

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

Abstract

A basic propositional modal fuzzy logic \({\sf {GK}}_{\Box}\) is defined by combining the Kripke semantics of the modal logic K with the many-valued semantics of Gödel logic G. A sequent of relations calculus is introduced for \({\sf {GK}}_{\Box}\) and a constructive counter-model completeness proof is given. This calculus is used to establish completeness for a Hilbert-style axiomatization and Gentzen-style hypersequent calculus admitting cut-elimination, and to show that the logic is PSPACE-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: A constructive analysis of RM. Journal of Symbolic Logic 52(4), 939–951 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Annals of Mathematics and Artificial Intelligence 4(3–4), 225–248 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics: a survey. Journal of Logic and Computation 13, 1–27 (2003)

    Article  Google Scholar 

  4. Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 36–50. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bou, F., Esteva, F., Godo, L., Rodríguez, R.: On the minimum many-valued logic over a finite residuated lattice (manuscript)

    Google Scholar 

  6. Caicedo, X., Rodríguez, R.: A Gödel modal logic (manuscript)

    Google Scholar 

  7. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford (1996)

    Google Scholar 

  8. Ciabattoni, A., Metcalfe, G., Montagna, F.: Adding modalities to MTL and its extensions. In: Proceedings of the 26th Linz Symposium (to appear)

    Google Scholar 

  9. Dummett, M.: A propositional calculus with denumerable matrix. Journal of Symbolic Logic 24, 97–106 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dyckhoff, R.: A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic Journal of the IGPL 7(3), 319–326 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fitting, M.C.: Many-valued modal logics. Fundamenta Informaticae 15(3-4), 235–254 (1991)

    MATH  MathSciNet  Google Scholar 

  12. Fitting, M.C.: Many-valued modal logics II. Fundamenta Informaticae 17, 55–73 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Gödel, K.: Zum intuitionisticschen Aussagenkalkül. Anzeiger Akademie der Wissenschaften Wien, mathematisch-naturwiss. Klasse 32, 65–66 (1932)

    Google Scholar 

  14. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  15. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1), 1–15 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Applied Logic, vol. 36. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  17. Priest, G.: Many-valued modal logics: a simple approach. Review of Symbolic Logic 1, 190–203 (2008)

    Google Scholar 

  18. Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics. Journal of Tsuda College 7, 7–14 (1975)

    MathSciNet  Google Scholar 

  19. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Wolter, F.: Superintuitionistic companions of classical modal logics. Studia Logica 58(2), 229–259 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, Z., Sui, Y., Cao, C., Wu, G.: A formal fuzzy reasoning system and reasoning mechanism based on propositional modal logic. Theoretical Computer Science 368(1-2), 149–160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Metcalfe, G., Olivetti, N. (2009). Proof Systems for a Gödel Modal Logic. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics