Skip to main content

Vector Dynamics and Transmission of Dengue Virus: Implications for Dengue Surveillance and Prevention Strategies

Vector Dynamics and Dengue Prevention

  • Chapter
  • First Online:
Dengue Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 338))

Abstract

Accounting for variation in mosquito vector populations will improve dengue surveillance and prevention. Because Aedes aegypti, the principle dengue virus (DENV) vector, transmit the virus with remarkable efficiency, entomological thresholds are especially low. Assessing risk of human infection based on immature mosquito indices has proven difficult. Greater emphasis should be placed on relative abundance of adult vectors in relation to human serotype-specific herd immunity, introduction of unique viruses, mosquito-human contact and weather. The most appropriate spatial scale for assessing entomological risk is the individual household. The scale for measuring DENV transmission risk has yet to be determined but is clearly larger than the household and likely to exceed several city blocks. Because households are expected to be a primary site for human DENV infection, intradomicile vector control strategies should be a priority, especially when the force of transmission is high. The most effective intervention strategy will combine vector control with vaccine delivery for rapid and sustained disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander N, Lenhart AE, Romero-Vivas CME, Barbazan P, Morrison AC, Barrera R, Arredondo-Jime Nez JI, Focks DA (2006) Sample sizes for identifying the key types of container occupied by dengue-vector pupae: the use of entropy in analyses of compositional data. Ann Trop Med Parasit 100:S5–S16

    Article  PubMed  Google Scholar 

  • Anderson R, May R (1991) Infectious Diseases of Humans. Oxford University Press, Oxford, UK, p 735

    Google Scholar 

  • Arrivillaga J, Barrera R (2004) Food as a limiting factor for Aedes aegypti in water-storage containers. J Vector Ecology 29:11–20

    Google Scholar 

  • Bang YH, Brown DN, Onwubiko AO (1981) Prevalence of potential yellow fever vectors in domestic water containers in south-east Nigeria. Bull WHO 59:107–114

    CAS  PubMed  Google Scholar 

  • Barrera R, Amador M, Clark GG (2006) Use of the pupal survey technique for measuring Aedes aegypti (Diptera : Culicidae) productivity in Puerto Rico. Am J Trop Med Hyg 74:290–302

    PubMed  Google Scholar 

  • Breteau H (1954) La fievere jaune en Afrique occidentale francaise. Un aspect de la medicine preventive massive. Bull WHO 11:453–481

    CAS  PubMed  Google Scholar 

  • Chan YC, Chan KL, Ho BC (1971) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore: I. Distribution and density. Bull WHO 44:617–627

    CAS  PubMed  Google Scholar 

  • Conner ME, Monroe WM (1923) Stegomyia indices and their value in yellow fever control. Am J Trop Med 4:9–19

    Google Scholar 

  • DeBenedictis J, Chow-Schaffer E, Costero A, Clark GG, Edman JD, Scott TW (2003) Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico using PCR-based DNA profiling. Am J Trop Med Hyg 68:447–452

    Google Scholar 

  • DeRoeck D, Jacqueline D, Clemens JD (2003) Policymakers' views on dengue fever/dengue haemorrhagic fever and the need for dengue vaccines in four southeast Asian countries. Vaccine 22:121–129

    Article  PubMed  Google Scholar 

  • Dye C (1992) The analysis of parasite transmission by bloodsucking insects. Ann Rev Entomol 37:1–19

    Article  CAS  Google Scholar 

  • Edman JD, Scott TW, Costero A, Morrison AC, Harrington LC, Clark GG (1998) Aedes aegypti (L.) (Diptera: Culicidae) movement influenced by availability of oviposition sites. J Med Entomol (Traub Memorial) 35:578–583

    CAS  Google Scholar 

  • Farrar J, Focks, D, Gubler, D, Barrera, R, Guzman, MG, Simmons, C, Kalayanarooj, S, Lum, L, McCall, PJ, Lloyd, L, Horstick, O, Dayal-Drager, R, Nathan, MB, Kroeger A (2007) Towards a global dengue research agenda. Trop Med Internat Hlth 12:695–699 On behalf of the WHO/TDR Dengue scientific working group

    Article  Google Scholar 

  • Focks DA, Haile DG, Daniels E, Mount GA (1993a) Dynamic life table model for Aedes aegypti (L.) (Diptera: Culicidae). Analysis of the literature and model development. J Med Entomol 30:1003–1017

    CAS  PubMed  Google Scholar 

  • Focks DA, Haile DG, Daniels E, Mount GA (1993b) Dynamic life table model for Aedes aegypti (L.) (Diptera: Culicidae). Simulation results and validation. J Med Entomol 30:1018–1028

    CAS  PubMed  Google Scholar 

  • Focks DA, Daniels E, Haile DG, Keesling JE (1995) A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53:489–506

    CAS  PubMed  Google Scholar 

  • Focks DA, Chadee DD (1997) Pupal survey: an epidemiologically significant surveillance methods for Aedes aegypti. An example using data from Trinidad. Am J Trop Med Hyg 56:159–167

    CAS  PubMed  Google Scholar 

  • Focks DA, Brenner RJ, Hayes J, Daniels E (2000) Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg 62:11–18

    CAS  PubMed  Google Scholar 

  • Focks DA, Alexander N (2006) Multicountry study of Aedes aegypti pupal productivity survey methodology: findings and recommendations. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Gatrell AC, Bailey TC, Diggle PJ, Rowlingson BS (1996) Spatial point pattern analysis and its application in geographical eoidemiology. Trans Institute British Geographers 21:256–274

    Article  Google Scholar 

  • Getis A, Morrison AC, Gray K, Scott TW (2003) Characteristics of the Spatial Pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69:494–503

    PubMed  Google Scholar 

  • Gould DJ, Mount GA, Scanlon JE, Ford HR, Sullivan MF (1970) Ecology and control of dengue vectors on an island in the Gulf of Thailand. J Med Entomol 7:499–508

    CAS  PubMed  Google Scholar 

  • Gubler DJ (1989) Dengue. In: Monath TP (ed) The Arboviruses: epidemiology and ecology, vol 2. CRC Press, Boca Raton, FL, pp 223–260

    Google Scholar 

  • Gubler DJ, Casta-Velez A (1991) A program for prevention and control of epidemic dengue and dengue hemorrhagic fever in Puerto Rico and the U.S. Virgin Islands. Bull PAHO 25:237–247

    CAS  Google Scholar 

  • Gubler DJ, Kuno G (1997) Dengue and Dengue Hemorrhagic fever. CAB International, New York, p 462

    Google Scholar 

  • Gubler DG (2002) How effectively is epidemiological surveillance used for dengue programme planning and epidemic response? Dengue Bull 26:96–106

    Google Scholar 

  • Harrington LC, Edman JD, Scott TW (2001a) Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38:411–422

    Article  CAS  PubMed  Google Scholar 

  • Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Clark GG, Kittayapong P, Scott TW (2001b) Analysis of survival rates for two age cohorts of Aedes aegypti (L.) (Diptera: Culicidae): Results from Puerto Rico and Thailand. J Med Entomol 38:537–547

    Article  CAS  PubMed  Google Scholar 

  • Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, Jones JJ, Kitthawee S, Kittayapong P, Sithiprasasna R, Edman JD (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72:209–220

    PubMed  Google Scholar 

  • Hemingway J, Beaty BJ, Rowland M, Scott TW, Sharp BL (2006) The Innovative Vector Control Consortium: Improved control of mosquito-borne diseases in and around the home. Trends in Parasitology 22:308–312

    Article  PubMed  Google Scholar 

  • Igarashi A (1997) Impact of dengue virus infection and its control. FEMS Immunol and Med Mcrobiol 18:291–300

    Article  CAS  Google Scholar 

  • Martinez-Ibarra JA, Rodriguez MH, Arredondo-Jimenez JI, Yuval B (1997) Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico. J Med Entomol 34:589–593

    CAS  PubMed  Google Scholar 

  • Jones JW, Sithiprasasna R, Schleich S, Coleman RE (2003) Evaluation of selected traps as tools for conducting surveillance for adult Aedes aegypti in Thailand. J Amer Mosq Control Assoc 19:148–150

    Google Scholar 

  • Kay B, Nam VS (2005) New strategy against Aedes aegypti in Vietnam. Lancet 365:613–617

    PubMed  Google Scholar 

  • Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, McCall PJ (2006) Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ 332:1247–1252

    Article  PubMed  Google Scholar 

  • Kuno G (1995) Review of the factors modulating dengue transmission. Epidemiol Reviews 17:321–335

    CAS  Google Scholar 

  • Kuno G (1997) Factors influencing the transmission of dengue viruses. In: Gubler DJ, Kuno G (eds) Dengue and Dengue Hemorrhagic Fever. CAB International, New York, pp 61–88

    Google Scholar 

  • Lloyd-Smith JO, Schreibe SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359

    Article  CAS  PubMed  Google Scholar 

  • Mcdonald PT (1977) Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in villages on the Kenya Coast II. Dispersal within and between villages. J Med Entomol 14:49–53

    CAS  PubMed  Google Scholar 

  • Morland HB, Hayes RO (1958) Urban dispersal and activity of Aedes aegypti. Mosq News 18:137–144

    Google Scholar 

  • Morrison AC, Getis A, Santiago M, Rigua-Perez JG, Reiter P (1998) Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg 58:287–298

    CAS  PubMed  Google Scholar 

  • Morrison AC, Costero A, Edman JD, Scott TW (1999) Increased fecundity of female Aedes aegypti (L.) (Diptera: Culicidae) fed only human blood prior to release in Puerto Rico. J Am Mosq Control Assoc (Barr issue) 15:98–104

    CAS  Google Scholar 

  • Morrison AC, Gray K, Getis A, Estete H, Sihuincha M, Focks D, Watts D, Scott TW (2004a) Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J Med Entomol 41:1123–1142

    Article  PubMed  Google Scholar 

  • Morrison AC, Astete H, Chapilliquen F, Dias G, Gray K, Getis A, Scott TW (2004b) Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos. J Med Entomol 41:502–510

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Sihuincha JD M, Stancil E, Zamora H, Astete JG Olson, Vidal-Ore C, Scott TW (2006) Aedes aegypti (Diptera:Culicidae) production from non-residential sites in the Amazonian city, Iquitos, Peru. Ann Trop Med Parasit 100:S73–S86

    Article  PubMed  Google Scholar 

  • Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R (2008) Defining the challenges and proposing new solutions for Aedes aegypti-borne disease prevention. PLoS Medicine 5:362–366

    Article  Google Scholar 

  • Nam VS, Nguyen HT, Tien TV, Niem TS, Hoa NT, Thao NT, Tron TQ, Yen NT, Ninh TU, Self LS (1993) Permethrin-treated bamboo curtains for dengue vector control-field trial, Viet Nam. Dengue Newsletter 18:23–28

    Google Scholar 

  • Nguyen HT, Tien TV, Tien HC, Ninh TU, Hoa NT (1996) The effect of Olyset net screen to control the vector of dengue fever in Vietnam. Dengue Bulletin 20:87–92

    Google Scholar 

  • Olson JG, Reeves WC, Emmons RW, Milby MM (1979) Correlation of Culex tarsalis population indices with the incidence of St. Louis encephalitis and western equine encephalomyelitis in California. Am J Trop Med Hyg 28:335–343

    CAS  PubMed  Google Scholar 

  • Pan American Health Organization (1994) Dengue and Dengue Hemorrhagic Fever in the Americas. Guidelines for Prevention and Control. Pan American Health Organization, Washington DC Pan American Health Organization Scientific Publication no. 548

    Google Scholar 

  • Reeves WC (1971) Mosquito vector and vertebrate host interaction: the key to maintenance of certain arboviruses. In: Fallis AM (ed) Ecology and physiology of parasites. Toronto, ON, University of Toronto Press, pp 223–230

    Google Scholar 

  • Reiter P, Gubler DJ (1997) Surveillance and control of urban dengue vectors. In: Gubler DJ, Kuno G (eds) Dengue and Dengue Hemorrhagic fever. CAB International, New York, pp 425–462

    Google Scholar 

  • Rodhain F, Rosen L (1997) Mosquito vectors and dengue virus-vector relationships. In: Gubler DJ, Kuno G (eds) Dengue and Dengue Hemorrhagic fever. CAB International, New York, NY, pp 61–88

    Google Scholar 

  • Scott TW, Clark GG, Lorenz LH, Amerasinghe PH, Reiter P, Edman JD (1993a) Detection of multiple blood-feeding by Aedes aegypti during a single gonotrophic cycle using a histological technique. J Med Entomol 30:94–99

    CAS  PubMed  Google Scholar 

  • Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Edman JD (1993b) Bloodfeeding patterns of Aedes aegypti in a rural Thai village. J Med Entomol 30:922–927

    CAS  PubMed  Google Scholar 

  • Scott TW, Naksathit A, Day JF, Kittayapong P, Edman JD (1997) Fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. Am J Trop Med Hyg 52:235–239

    Google Scholar 

  • Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD (2000a) Longitudinal studies of Aedes aegypti (L.) (Diperta: Culicidae) in Thailand and Puerto Rico: Population dynamics. J Med Entomol 37:77–88

    Article  CAS  PubMed  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD (2000b) Longitudinal studies of Aedes aegypti (L.) (Diperta: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. J Med Entomol 37:89–101

    Article  CAS  PubMed  Google Scholar 

  • Scott TW, Morrison AC (2003) Aedes aegypti density and the risk of dengue virus transmission. In: Takken W, Scott TW (eds) Ecological aspects for application of genetically modified mosquitoes. FRONTIS, Dordrecht, The Netherlands, pp 187–206

    Google Scholar 

  • Scott TW, Morrison AC (2008) Longitudinal field studies will guide a paradigm shift in dengue prevention in. Vector-borne diseases: understanding the environmental, human health, and ecological connections. Washington DC, The National Academies Press, pp 132–149

    Google Scholar 

  • Shea P, Thrall H, Burdon JJ (2000) An integrated approach to management in epidemiology and pest control. Ecol Lett 3:150–158

    Article  Google Scholar 

  • Sheppard PM, Macdonald WW, Tonn RJ, Grab B (1969) The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol 38:661–702

    Article  Google Scholar 

  • Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438:492–495

    Article  CAS  PubMed  Google Scholar 

  • Sunish IP, Rajendran R, Mani TR, Munirathinam A, Dash AP, Tyagi BK (2007) Vector control complements mass drug administration against bancroftian filariasis in Tirukoilur, India. Bull WHO 85:138–145

    CAS  PubMed  Google Scholar 

  • Trpis M, Hausermann W (1986) Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 35:1263–1279

    CAS  PubMed  Google Scholar 

  • Tun-Lin W, Kay BH BH, Barnes A (1995) Understanding productivity, a key to Aedes aegypti surveillance. Am J Trop Med Hyg 53:595–601

    CAS  PubMed  Google Scholar 

  • Tun-Lin W, Kay BH, Barnes A, Forsyth S (1996) Critical examination of Aedes aegypti indices: correlations with abundance. Am J Trop Med Hyg 53:595–601

    Google Scholar 

  • Van Handel E, Edman JD, Day JF, Scott TW, Clark GG, Reiter P, Lynn HC (1994) Plant sugar, glycogen, and lipid assay of Aedes aegypti collected in urban Puerto Rico and rural Florida. J Amer Mosq Control Assoc 10:149–153

    CAS  Google Scholar 

  • Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infec Dis 181:2–9

    Article  CAS  Google Scholar 

  • Waterman SH, Gubler D (1989) Dengue Fever. Clin Dermatol 7:117–122

    Article  CAS  PubMed  Google Scholar 

  • Watts DM, Burke DS, Harrison BA, Whitemire R, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152

    CAS  PubMed  Google Scholar 

  • Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ, Watts CH, Chandiwana SK, Anderson RM (1997) Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. PNAS 94:338–342

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (1997) Dengue haemorrhagic fever: diagnosis, treatment, prevention and control. World Health Organization, Geneva, p 84

    Google Scholar 

  • World Health Organization (1999) Prevention and Control of Dengue and Dengue Haemorrhagic Fever: Comprehensive Guidelines. WHO Regional Publication, SEARO No. 29. pp 134

    Google Scholar 

  • World Health Organization (2006) Multicountry study of Aedes aegypti pupal productivity survey methodology: findings and recommendations. Switzerland, Geneva

    Google Scholar 

  • Yasuno M, Pant C (1970) Seasonal changes in biting and larval infestation rates of Aedes aegypti in Bangkok, Thailand in 1969. Bull WHO 43:319–325

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, T.W., Morrison, A.C. (2010). Vector Dynamics and Transmission of Dengue Virus: Implications for Dengue Surveillance and Prevention Strategies. In: Rothman, A. (eds) Dengue Virus. Current Topics in Microbiology and Immunology, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02215-9_9

Download citation

Publish with us

Policies and ethics