Skip to main content

Establishment and Functioning of Arbuscular Mycorrhizas

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

Located at the interface with the soil, plant roots are the preferred niche for many soil fungi that live in the rhizosphere as saprotrophs or are directly associated to the photosynthetic plants as symbionts. Among the latter, arbuscular mycorrhizal (AM) fungi represent a vital component in plant ecosystems: they have a widespread distribution in very diverse environments (Smith and Read 2008) and are present in more than 80% of the land plants, from liverworts to ferns, from gymnosperms to angiosperms. The absence of a strict host specificity is considered a direct consequence of the long coevolutionary history which dates back to the Ordovician (460 million years ago; Remy et al. 1994), when the first land plants, without true roots but with rhizomes, were subjected to mineral nutrient deprivation and forced to associate with heterotrophic soil microbes (Brundrett 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824-827

    Article  PubMed  CAS  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) Pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a micro RNA399 target gene. Plant Physiol 141:1000-1011

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509-524

    Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Microbe-Plant Interact 20:1055-1062

    Google Scholar 

  • Bago B, Zipfel W, Williams RC, Jun J, Arreola R, Pfeffer PE, Lammers PJ, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108-124

    Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496-1507

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) Pho2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988-999

    Article  PubMed  CAS  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620-627

    Article  PubMed  CAS  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon- Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239-1247

    Article  CAS  Google Scholar 

  • Blancaflor EB, Zhao L, Harrison MJ (2001) Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217:154-165

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P (1984) Anatomy and morphology. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizas. CRC, Boca Raton, pp 5-33

    Google Scholar 

  • Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Esser K, Hock B (eds) The Mycota IX. Springer, Berlin, pp 45-61

    Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492-498

    Article  PubMed  CAS  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genet Biol 41:794-804

    Article  PubMed  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycor-rhizas of land plants. New Phytol 154:275-304

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11-26

    Article  PubMed  CAS  Google Scholar 

  • Burleigh SH (2001) Relative quantitative PCR to study nutrient transport processes in arbuscular mycor- rhizas. Plant Sci 160:899-904

    Article  PubMed  CAS  Google Scholar 

  • Cappellazzo G, Lanfranco L, Bonfante P (2007) A limiting source of organic nitrogen induces specific transcrip- tional responses in the extraradical structures of the endomycorrhizal fungus Glomus intraradices. Curr Genet 51:59-70

    Article  PubMed  CAS  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429-437

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SL, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412-421

    Article  PubMed  CAS  Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Lou^äo MA, Jakobsen J (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol 144:782-792

    Google Scholar 

  • Declerck S, Strullu DG, Fortin JA (2005) In vitro culture of mycorrhizas. In: Varma A (ed) Soil biology, vol 4. Springer, Berlin, pp 388-400

    Google Scholar 

  • Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol 163:381-392

    Article  CAS  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375-393Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Application of in vitro methods to study carbon uptake and transport by AM fungi. Plant Soil 226:255-261

    Google Scholar 

  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht N, Boller T, Felix G, Amrhein N, Bucher M (2007) The signal induction plant phosphate transporters in the arbuscular mycorrhizal symbiosis is lysophosphati- dylcholine. Science 318:265-268

    Article  PubMed  CAS  Google Scholar 

  • Duc G, Trouvelet A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215-222

    Article  Google Scholar 

  • Frenzel A, Manthey K, Perlick AM, Meyer F, Pühler A, Krajinski F, Küster H (2005) Combined transcrip- tome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant-Microbe Interact 18:771-782

    Article  PubMed  CAS  Google Scholar 

  • Gallaud I (1905) Etudes sur les mycorrhizes endotrophs. Rev Gen Bot 17:5-50 Genre A, Bonfante P (1997) A mycorrhizal fungus changes microtubule orientation in tobacco root cells. Protoplasma 199:30-38

    Google Scholar 

  • Genre A, Bonfante P (1998) Actin versus tubulin configuration in arbuscule containing cells from mycorrhizal tobacco roots. New Phytol 140:745-752

    Article  CAS  Google Scholar 

  • Genre A, Bonfante P (2002) Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycor- rhizal fungus. Protoplasma 219:43-50

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Bonfante P (2005) Building a mycorrhizal cell: how to reach compatibility between plants and arbuscular mycorrhizal fungi. J Plant Interact 1:3-13

    Article  CAS  Google Scholar 

  • Genre A, Bonfante P (2007) Check-in procedures for plant cell entry by biotrophic microbes. Mol Plant-Microbe Interact 20:1023-1030

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago trunca- tula root epidermal cells before infection. Plant Cell 17:3489-3499

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the

    Google Scholar 

  • colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant

    Google Scholar 

  • Cell 20:1407-1420

    Google Scholar 

  • Gianinazzi-Pearson V, Séjalon-Delmas N, Genre A, Jeandroz S, Bonfante P (2007) Plants and arbuscular mycorrhizal fungi: cues and communication in the early steps of symbiotic interactions. Adv Bot 46:181-219

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587-593

    Article  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189-194 Goormachtig S, Capoen W, James EK, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA 101:6303-6308

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823

    Article  PubMed  CAS  Google Scholar 

  • Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative tran- scriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066-8070

    Article  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19-42

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413-2429

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi.

    Google Scholar 

  • Plant Soil 226:275-285

    Google Scholar 

  • Helber N, Requena N (2007) Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol (in press)

    Google Scholar 

  • Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125-136

    Article  PubMed  CAS  Google Scholar 

  • Hirsh AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Genet Biol 23:205-212

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297-299

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Perlick AM, Puhler A, Kuster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant-Microbe Interact 16:903-915

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283-1301

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Penmetsa VR, Terzaghi N, Cook DR, Harrison MJ (2007a) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720-1725

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007b) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310-322

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687-696

    Article  PubMed  CAS  Google Scholar 

  • Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705-712

    Article  CAS  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quist- gaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359-364

    Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis- specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:1-11

    Article  Google Scholar 

  • Kosuta S, Asledine S, Sun J, Miwa H, Morris RJ, Downie JE, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signalling pathway of legumes. Proc Natl Acad Sci USA 105:9823-9828

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8-18

    Article  PubMed  Google Scholar 

  • Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez-Sebastia C, Allen JW, Douds DD, Pfeffer PE, et al (2001) The glyoxylate cycle in an arbuscular mycorrhizal fungus: gene expression and carbon flow. Plant Physiol 127:1287-1298

    Article  PubMed  CAS  Google Scholar 

  • LaRue, TA, Weeden NF (1994) The symbiosis genes of the host. Proc Eur Nitrogen Fix Conf 1:147

    Google Scholar 

  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, et al (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361-1364

    Article  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529-544

    Article  PubMed  CAS  Google Scholar 

  • López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMTi encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102-110

    Article  PubMed  Google Scholar 

  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutu- alistic symbiosis. Plant Cell Physiol 47:807-817

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Perotto S, Bonfante P (2007) Mycorrhizal fungi: a fungal community at the interface between soil and roots. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, 2nd edn. CRC, Boca Raton, pp 201-236

    Google Scholar 

  • Marx J (2004) The roots of plant-microbe collaborations. Science 304:234-239

    Article  PubMed  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tama- sloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycop- ersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236-250

    Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673-681

    Article  PubMed  CAS  Google Scholar 

  • Novero M, Faccio A, Genre A, Stougaard J, Webb KJ, Mulder L, Parniske M, Bonfante P (2002) Dual requirement of the LjSym4 gene for mycorrhhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytol 154:741-749

    Article  CAS  Google Scholar 

  • Olah B, Briere C, Bécard G, Dénarie' J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195-207

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351-357

    Article  PubMed  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature 6:763-775

    CAS  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses (Tansley review). New Phytol 172:35-46

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185-192

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in arbuscular mycorrhiza. Plant Physiol 120:587-598

    Article  PubMed  CAS  Google Scholar 

  • Puhler A, Strack D (2007) Molecular basics of mycorrhizal symbioses. Phytochemistry 68:6-7

    Article  PubMed  Google Scholar 

  • Ravnskov S, Wu Y, Graham JH (2003) Arbuscular mycor- rhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol 157:539-545

    Article  CAS  Google Scholar 

  • Reinhardt D (2007) Programming good relations - development of the arbuscular mycorrhiza symbiosis. Curr Opin Plant Biol 10:98-105

    Article  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million year old vesicular arbuscular mycorrhizae. Proc Nat Acad Sci USA 91:11841-11843

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure (Tansley review). New Phytol 171:41-53

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell Suppl 2002:S401-S417 Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57:4015-4023

    Google Scholar 

  • Schaarschmidt S, Gonzalez MC, Roitsch T, Strack D, Sonnewald U, Hause B (2007a) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827-1840

    CAS  Google Scholar 

  • Schaarschmidt S, Kopka J, Ludwig-Müller J, Hause B (2007b) Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant J 51:390-405

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413-1421

    Article  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, and Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933-936

    Article  PubMed  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root- infecting fungi. Nature 431:582-586

    Article  PubMed  CAS  Google Scholar 

  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJGM, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal

    Google Scholar 

  • roots during development of the pre-penetration apparatus. Plant Physiol 144:1455-1466

    Google Scholar 

  • Smith AF, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373-388 Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London Smith SE, Smith AF, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16-20

    Google Scholar 

  • Smith SE, Barker SJ, Zhu Y-G (2006) Fast moves in arbuscular mycorrhizal symbiotic signalling. Trends Plant Sci 11:369-371

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864-3876

    Article  PubMed  CAS  Google Scholar 

  • Toth R, Miller RM (1984) Dynamics of arbuscule development and degeneration in Zea mays mycorrhiza. Am J Bot 7:449-460 Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux JA (2005) Dependence of arbuscular mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341-5347

    Google Scholar 

  • van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Studies in ecology, vol 157. Springer, Heidelberg van der Heijden MAG, Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174:244-250

    Google Scholar 

  • Versaw WK, Chiou TJ, Harrison MJ (2002) Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant Soil 244:239-245

    Article  CAS  Google Scholar 

  • Walter MH, Floss DS, Hans J, Fester T, Strack D (2007) Apocarotenold biosynthesis in arbuscular mycor- rhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry 68:130-138

    Article  PubMed  CAS  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant-Microbe Interact 17:1385-1393

    Article  PubMed  CAS  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491-2502

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Bonfante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonfante, P., Balestrini, R., Genre, A., Lanfranco, L. (2009). Establishment and Functioning of Arbuscular Mycorrhizas. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_14

Download citation

Publish with us

Policies and ethics