Skip to main content

DEM simulation of wave propagation in two-dimensional ordered array of particles

  • Conference paper
Shock Waves

Summary

The dynamic response of a two-dimensional particle array subjected to internally bursting load was investigated using a discrete element method. From the distribution of normal contact force between spheres, it was found that the contact forces are reflected and diffracted by the voids and reflected and transmitted by seven alumina ceramic spheres. The particle array was less displaced horizontally layer by layer depending on the change of the contact force distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nesterenko V. F.: Dynamics of heterogeneous materials (Springer, 2001) pp 1-81

    Google Scholar 

  2. Melo F., Job S., Santibanez F., Tapia F.: Experimental evidence of shock mitigation in a Hertzian tapered chain. Physical Review E 73, 041305 (2006)

    Article  Google Scholar 

  3. Nakagawa M., Agui J. H., Wu D. T., Extramiana D. V.: Impulse dispersion in a tapered granular chain. Granular Matter 4, (2003)

    Google Scholar 

  4. Rossmanith H. P., Shukla A.: Photoelastic investigation of dynamic load transfer in granular media, Acta Mechanica 42, (1982)

    Google Scholar 

  5. Britan A., Ben-Dor G., Igra O., Tanaka K., Nishida M.: Dynamics of stress wave propagation through a disc and a chain of discs. In: Proc. ISSW25 (2004) pp 779-784

    Google Scholar 

  6. Shukla A., Sadd M. H., Mei H.: Experimental and Computational Modeling of Wave Propagation in a Granular Materials, Experimental Mechanics 30, 4 (1990)

    Google Scholar 

  7. Hostler S. R.: Wave propagation in Granular Materials. Ph.D. thesis, California Institute of Technology, (2005)

    Google Scholar 

  8. Sen S., Sinkovits R. S.: Sound propagation in impure granular columns. Physical Review E 54, 6 (1996)

    Google Scholar 

  9. Gilles B., Coste C.: Nonlinear elasticity of a 2D regular array of beads, In: Powders and Grains, (AA Balkema, 2001) pp 113-116

    Google Scholar 

  10. Mouraille O., Mulder W. A., Luding S.: Sound wave acceleration in granular materials, Journal of Statistical Mechanics (2006)

    Google Scholar 

  11. Nishida M., Tanaka K., Ito A., Lu Z.: Impact behavior of two-dimensional particulate aggregation containing dissimilar material layer. In: Proc. ISSW 24 (2005) pp 1097-1103

    Google Scholar 

  12. Nishida M., Tanaka K., Ikeda, Y., Tanaka, Y.: Stress wave propagation in aggregated particles induced by an internally bursting load. In: Proc. ISSW 25 (2006) pp 791–796

    Google Scholar 

  13. Cundall P. A., Strack O. D. L.: A Discrete numerical model. for granular assemblies. Geotechnique 29, 1 (1979)

    Google Scholar 

  14. Herten M., Pulsfor M.: Determination of spatial earth pressure on circular shaft constructions. Granular Matter 2, 1 (1999)

    Google Scholar 

  15. Horio M., Kajikawa S.: DEM simulation of industrial issues in fluidized bed reactors. In: Handbook of conveying and handling of particulate solids, ed by Levy A., Kalman H. (Elsevier 2001) pp 547-559

    Google Scholar 

  16. Hassanpour A., Ghadiri M.: Distinct element analysis and experimental evaluation of the Heckel analysis of bulk powder compression. Powder Technology 141, 3 (2004)

    Google Scholar 

  17. C. Thornton: Trans. ASME J. Appl. Mech., 64, 259 (1997)

    Google Scholar 

  18. Li L. Y., Wu C. Y, Thornton C.: Proceedings of Institution of Mechanical Engineers 216, C4 (2002)

    Google Scholar 

  19. Zhang X., Vu-Quoc L.: International Journal of Impact Engineering 27, (2002)

    Google Scholar 

  20. Johnson K. L.: Contact Mechanics (Cambridge University Press, 1985) pp 153-155

    Google Scholar 

  21. Mindlin R. D.: Transaction of ASME Journal of Applied Mechanics 16, (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishida, M., Tanaka, K., Ishida, T. (2009). DEM simulation of wave propagation in two-dimensional ordered array of particles. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85181-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85181-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85180-6

  • Online ISBN: 978-3-540-85181-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics