Skip to main content

Ion Relations of Plants and Soil Patterns

  • Chapter
Arid Dune Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 200))

Climatic conditions govern the water cycle and balance and, thereby, not only the availability of water during the seasons, but also the presence of soluble ions in upper soil horizons and, thus, in an ecosystem. In humid regions, the landscape geomorphology is characterized by a typical drainage system which starts at springs and wells and then continues along water-collecting creeks, rivers and streams, eventually reaching the ocean. This water always contains more or less small amounts of water-soluble ions leached from rocks and soils during capillary movement. A rather small proportion of the ions, however, is always to be found also in rainwater (Walter and Breckle 1983, 1985).

In humid regions, water transport and capillary threads of soil water are directed mainly downstream. In arid regions, capillary movement of soil water is, if present at all, mainly upstream to the soil surface. Here, various ions transported by the water are precipitated and can cause the formation of salt crusts (Breckle 2002b).

In general, in arid regions the input of water by precipitation (rain, snow, dew) over the year to a distinct ecosystem or part of landscape is less than the possible output by potential evapo-transpiration. In humid regions, this is reversed. This has the consequence that, in arid areas, salinization of soils is always a serious danger, especially if leaching of salts is possible in deeper soil horizons or adjacent parent rocks (mainly of NaCl and, to a smaller extent, other water-soluble ions, too).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhani H (2006) Biodiversity of halophytic and sabkha ecosystems in Iran. In: Khan A, Böer B, Kust GS (eds) Sabkha ecosystems, vol II. West and Central Asia. Tasks for Vegetation Science vol 42. Kluwer, Dordrecht, pp 71–88

    Chapter  Google Scholar 

  • Albert R, Pfundner G, Hertenhagen G, Kästenbauer T, Watzka M (2000) The physiotype approach to understanding halophytes and xerophytes. In: Breckle S-W, Schweizer B, Arndt U (Hrsg) Ergebnisse weltweiter ökologischer Forschung. Heimbach, Stuttgart, pp 69–87

    Google Scholar 

  • Blume H-P, Yair A, Yaalon DH (1995) An initial study of pedogenic features along a transect across dunes and interdune areas. Nizzana region, Negev Israel. Adv GeoEcol 28:51–64

    Google Scholar 

  • Bornkamm R, Darius F, Prasse R (1998) Element content of perennial plant species in the sand desert near Nizzana. J Plant Nutr Soil Sci 161:189–195

    Article  CAS  Google Scholar 

  • Breckle S-W (1976) Zur Ökologie und zu den Mineralstoffverhältnissen absalzender und nichtabsalzender Xerohalophyten (unter besonderer Berücksichtigung von Untersuchungen an Atriplex confertifolia und Ceratoides lanata in Utah/USA). Cramer, Berlin, Dissertationes Botanicae 35, pp 1–169

    Google Scholar 

  • Breckle S-W (1986) Studies of halophytes from Iran and Afghanistan. II. Ecology of halophytes along salt gradients. Proc R Soc Edinburgh 89B:203–215

    Google Scholar 

  • Breckle S-W (1990) Salinity tolerance of different halophyte types. In: El Bassam N, Dambroth M, Loughman BC (eds) Genetic aspects of plant nutrition. Proc 3rd Int Symp Genetic Aspects of Plant Mineral Nutrition (Developments in Plant and Soil Sciences). Springer, Amsterdam, pp 167–175

    Chapter  Google Scholar 

  • Breckle S-W (1995) How do plants cope with salinity? In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. Proc Int Symp, Department of Botany, University of Karachi, Pakistan, pp 199–221

    Google Scholar 

  • Breckle S-W (2000) Wann ist eine Pflanze ein Halophyt? Untersuchungen an Salzpflanzen in Zentralasien und anderen Salzwüsten. In: Breckle S-W, Schweizer B, Arndt U (Hrsg) Ergebnisse weltweiter ökologischer Forschungen. Proc 1st Symp A.F.W. Schimper-Foundation, establ. by H. and E. Walter, Hohenheim. Heimbach, Stuttgart, pp 91–106

    Google Scholar 

  • Breckle S-W (2002a) Salt deserts in Iran and Afghanistan. In: Barth H-J, Böer B (eds) Sabkha ecosystems, vol. I. The Arabian Peninsula and adjacent countries. Tasks for Vegetation Science vol 36. Kluwer, Dordrecht, pp 71–88

    Google Scholar 

  • Breckle S-W (2002b) Salinity, halophytes and salt affected natural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity. Environment–Plants–Molecules. Kluwer, Dordrecht, pp 53–77

    Google Scholar 

  • Breckle S-W, Scheffer A, Wucherer W (2001) Halophytes on the dry seafloor of the Aral Sea. In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin Heidelberg New York, pp 139–146

    Chapter  Google Scholar 

  • Butnik AA, Japakova UN, Begbaeva GF (2001): Halophytes: structure and function. In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin Heidelberg New York, pp 147–153

    Chapter  Google Scholar 

  • Ebeling D (1996) Salzdynamik in Böden des Dünengebeites von Nizzana (Israel). Diplomarbeit, Institut für Geographie, Westf.-Wilhelms Universität Münster

    Google Scholar 

  • El-Ghonemy AA, El-Gazar A, Wallace A, Kish F, Rommel EM (1977) Mineral element composition of perennial vegetation in relation to soil types in the Northeastern corner of the Western desert of Egypt. Bot Gaz 138:192–205

    Article  CAS  Google Scholar 

  • Eshel A (1985) Response of Suaeda aegyptiaca to KCl, NaCl, Na2SO4 treatments. Physiol Plant 64:308–315

    Article  CAS  Google Scholar 

  • Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81:683–692

    Article  Google Scholar 

  • Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart

    Google Scholar 

  • Macdonald BCT, Melville MD, White I (1999) The distribution of soluble cations within chenopod-patterned ground, arid western New South Wales, Australia. Catena 37:89–105

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Reimann C (2003) Vergleichende Untersuchungen zum Salzhaushalt der Chenopodiaceae, unter besonderer Berücksichtigung der Kalium-Natrium-Verhältnisse. Cramer, Berlin, Dissertationes Botanicae 372, pp 1–303

    Google Scholar 

  • Reimann C (2005) Die Kalium-Natrium-Verhältnisse der Chenopodiaceae in ihrer Beziehung zu taxonomischen und ökophysiologischen Charakteristika der verschiedenen Arten. In: Veste M, Wucherer W, Homeier J (eds) Ökologische Forschung im globalen Kontext. Festschrift Siegmar-Walter Breckle, Cuvillier, Göttingen, pp 25–43

    Google Scholar 

  • Reimann C, Breckle S-W (1993) Sodium relations in Chenopodiaceae: a comparative approach. Plant Cell Environ 16:323–328

    Article  CAS  Google Scholar 

  • Rodin LE, Bazilevich I (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Rummel B, Felix-Henningsen P (2004) Soil water balance of an arid linear sand dune. Int Agrophys 18:333–337

    Google Scholar 

  • Sartorius U (1996) Untersuchungen zur Verteilung von Na, K, Cl auf die oberirdische Biomasse und deren kleinräumige Dynamik in einem Längsdünensystem in Nizzana, Israel. Diploma Thesis, University of Bielefeld

    Google Scholar 

  • Shaltout KH (1992) Nutrient status of Thymelaea hirsuta (L.) Endl. in Egypt. J Arid Environ 23:423–432

    Google Scholar 

  • Teakle JH (1937) The salt (sodium chloride) content of rain water. J Agric West Austr 14:115–133

    CAS  Google Scholar 

  • Veste M (2004) Zonobiom III: Sinai-Halbinsel und Negev-Wüste. In: Walter H, Breckle S-W (Hrsg) Ökologie der Erde, Band 2. Spezielle Ökologie der tropischen und subtropischen Zonen. Elsevier, Spektrum Akademischer, Amsterdam, pp 629–659

    Google Scholar 

  • Veste M, Breckle S-W (2000) Ionen- und Wasserhaushalt von Anabasis articulata in Sanddünen der nördlichen Negev-Sinai-Wüste. In: Breckle S-W, Schweizer B, Arndt U (Hrsg) Ergebnisse weltweiter Forschung. Heimbach, Stuttgart, pp 481–485

    Google Scholar 

  • Veste M, Mohr M (2005) Vegetation der Lineardünen der zentralen Namib und deren Ionenhaushalt. In: Veste M, Wucherer W, HomeierJ (eds) Ökologische Forschung im globalen Kontext. Festschrift Siegmar-Walter Breckle, Cuvillier, Göttingen, pp 93–107

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, New York

    Google Scholar 

  • Walter H, Breckle S-W (1983) Ökologie der Erde. Band 1. Ökologische Grundlagen in globaler Sicht. UTB-Große Reihe, pp 1–238. Fischer, Stuttgart

    Google Scholar 

  • Walter H, Breckle S-W (1985) Ecological systems of the geobiosphere, vol 1. Ecological Principles in Global Perspective. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Winter K, Troughton JH, Evenari M, Läuchli A, Lüttge U (1976) Mineral ion composition and occurrence of CAM-like diurnal malate fluctuations in plants of coastal and desert habitats of Israel and Sinai. Oecologia 25:125–143

    Article  Google Scholar 

  • Wucherer W, Breckle S-W (2005) Desertifikationsbekämpfung und Sanierung der Salzwüsten am Aralsee. Sukzession und Phytomelioration, Naturschutz und nachhaltige Entwicklung. Bielefelder Ökologische Beiträge (BÖB) 19:1–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Veste, M., Sartorius, U., Breckle, S.W. (2008). Ion Relations of Plants and Soil Patterns. In: Breckle, SW., Yair, A., Veste, M. (eds) Arid Dune Ecosystems. Ecological Studies, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75498-5_24

Download citation

Publish with us

Policies and ethics