Skip to main content

Carbon Nanotubes as SPM Tips: Mechanical Properties of Nanotube Tips and Imaging

  • Chapter
Applied Scanning Probe Methods VIII

Abstract

In this chapter, a thorough investigation of the use of carbon nanotubes as nanoprobes of an atomic forcemicroscope is presented. Because of theirmechanical robustness, their controlled geometry with high aspect ratio, their small size and well-defined chemical composition, carbon nanotubes as probes solve many experimental and modeling problems of local probes methods. Over the last decade, many attempts were dedicated to use of carbon nanotubes as nanoprobes. However, in spite of a large number of works, there are still many questions concerning the proper use of carbon nanotubes, such as the type of more appropriate growth methods and an accurate interpretation of the mechanical properties. We present two growth methods based on chemical vapor deposition: (1) anchoring of multiwalled nanotubes to a commercial Si tip and (2) direct growth of a single-walled nanotube on the tip apex. Control parameters such as radius, length, angle with the sample and anchoring are discussed. The mechanical properties of those nanotubes anchored to the tip aremodeled and experimentally probed by dynamical atomic force microscopy in frequency modulation mode. Most of the nanotube mechanical behavior can be understood with a flexural elasticity and an adhesive force. We particularly focus on evaluation of the nanotube equivalent stiffness and on its adhesion force and energy. We demonstrate that the balance between adhesion and elastic energy can be altered by changing the oscillation amplitude. Finally, the nanotube adhesion to the surface is used to image a heterogeneous sample, demonstrating the ability of the nanotube to be chemically sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giessibl FJ (2003) Rev Mod Phys 75:949–989

    Article  Google Scholar 

  2. Nonnemacher M, O’Boyle MP, Wrickramasinghe HK (1991) Appl Phys Lett 58:2921–2923

    Article  Google Scholar 

  3. Frisbie CD, Rozsnyai LF, Noy A, Whrighton MS, Lieber CM (1998) Science 265:2072–2074

    Google Scholar 

  4. Noy A, Sanders CH, Vezenov DV, Wong SS, Lieber CM (1998) Langmuir 14:1508–1511

    Article  Google Scholar 

  5. Kueng A, Kranz C, Mizaikoff B (2003) Sens Lett 1:2–15

    Article  Google Scholar 

  6. Nanoworld (2007) http://www.nanoworld.com

    Google Scholar 

  7. Nanosensors (2007) http://www.nanosensors.com

    Google Scholar 

  8. Iijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  9. Salvetat JP et al. (1999) Phys Rev Lett 82:944–947

    Article  Google Scholar 

  10. Lu JP (1997) Phys Rev Lett 79:1297–1300

    Article  Google Scholar 

  11. Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147–150

    Article  Google Scholar 

  12. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971–1975

    Article  Google Scholar 

  13. Iijima S, Brabec C, Maiti A, Bernholc J (1996) J Chem Phys 104:2089–2092

    Article  Google Scholar 

  14. Lemay SG, Janssen JW, van den Hout M, Mooij M, Bronikowsky MJ, Williw PA, Smalley RE, Kouwenhoven LP, Dekker C (2001) Nature 412:617

    Article  Google Scholar 

  15. Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Science 291:97–100

    Article  Google Scholar 

  16. Shimuzu T, Tokumoto H, Akita S, Nakayama Y (2001) Surf Sci 486:L455

    Article  Google Scholar 

  17. Konishi H, Murata Y, Wongwiriyapan W, Kishida M, Tomika M, Motoyoshi K, Honda S, Katayama M, Yoshimoto S, Kubo K, Hobara R, Mastuda I, Hasegawa S, Yoshimura M, Lee J-G, Mori H (2007) Rev Sci Instrum 78:013703-1–013703-6

    Google Scholar 

  18. Dai H, Franlin N, Han J (1998) Appl Phys Lett 73:1508

    Article  Google Scholar 

  19. Stevens R, Nguyen C, Cassel A, Delzeit L, Meyyappan M, Han J (2000) Appl Phys Lett 77:3453–3455

    Article  Google Scholar 

  20. Kuramochi H, Ando K, Tokizaki T, Yasutake M, Pérez-Murano, Dagata JA, Yokoyama H (2004) Surf Sci 566:343–348

    Article  Google Scholar 

  21. Wong SS, Joselevitch E, Wooley AT, Cheung CL, Lieber CM (1998) Nature 394:52–55

    Article  Google Scholar 

  22. Miyauchi Y, Chiasi S, Murakami Y, Hayashida Y, Maruyama S (2004) Chem Phys Lett 387:198–203

    Article  Google Scholar 

  23. Nishino T, Ito T, Vezenov DV (2002) Anal Chem 74:4275–4278

    Article  Google Scholar 

  24. Collins PG, Avouris P (2000) Sci Am 62–70

    Google Scholar 

  25. Avouris P, Hertel T, Martel R, Schmidt T, Shea HR, Walkup RE (1999) Appl Surf Sci 141:201–209

    Article  Google Scholar 

  26. Walkeajärvi T, Leivonen J, Ahlskog A (2005) J Appl Sci 98:104301

    Google Scholar 

  27. Whittaker JD, Minot ED, Tanenbaum DM, McEueun PL, Davis RC (2006) Nano Lett 6:953

    Article  Google Scholar 

  28. Ajayan PM, Ebbesen TW (1997) Rep Prog Phys 60:1025–1062

    Article  Google Scholar 

  29. Endo M, Kroto HW (1992) J Chem Phys 96:6941–6944

    Article  Google Scholar 

  30. Dai H, Rinsler AG, Nikolaev P, Thess A, Colbert DT, Smalley R (1996) Chem Phys Lett 260:471–475

    Article  Google Scholar 

  31. Cheung CL, Hafner JH, Lieber CM (2000) Proc Natl Acad Sci USA 97:3809–3813

    Article  Google Scholar 

  32. Hafner JH, Cheung CL, Oosterkamp TH, Lieber CM (2001) J Chem Phys 105:743–746

    Article  Google Scholar 

  33. Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH, Takkeyasu K (1999) Appl Phys Lett 74:4061–4063

    Article  Google Scholar 

  34. Jarvis S, Ishida T, Uchihashi T, Tokumoto H, Tokumoto H (2001) Appl Phys A 72(Suppl):S129–S132

    Article  Google Scholar 

  35. Martinez J, Yusvinsky TD, Fennimore AM, Zettl A, Garcia R, Bustamante C (2005) Nanotechnology 16:2493–2496

    Article  Google Scholar 

  36. Lee HW, Kim SH, Kwak YK, Han CS (2005) Rev Sci Instrum 76:046108:1–046108:5

    Google Scholar 

  37. Tang J, Yang G, Zhang Q, Parhat A, Maynor B, Liu J, Qin LC, Shou O (2005) Nano Lett 5:11–14

    Article  Google Scholar 

  38. Stevens RMD, Frederick NA, Smith BL, Morse DE, Stucky GD, Hansma PK (2000) Nanotechnology 11:1–5

    Article  Google Scholar 

  39. Nguyen CV, Chao KJ, Stevens RMD, Delzeit D, Cassel A, Harper JD, Han J Meyyapan M (2001) Nanotechnology 12:363

    Article  Google Scholar 

  40. Nakayama Y, Nishijima H, Akita S, Hohmura KI, Yoshimura S H, Takeyasu K (2000) J Vac Sci Technol B 18:661–664

    Article  Google Scholar 

  41. Yamamoto K, Akita S, Nakayama Y (1996) Jpn J Appl Phys 35:L917

    Article  Google Scholar 

  42. Dai H, Kong J, Zhou C, Franklin N, Tombler T, Cassel A, Fan S, Chapline M (1999) J Phys Chem B 103:11255

    Article  Google Scholar 

  43. Homma Y, Kobayashi Y, Ogino T, Yamashita T (2002) Appl Phys Lett 81:2261–2263

    Article  Google Scholar 

  44. Kong J, Zhou C, Morpurgo A, Soh T, Marcus C, Quate C, Dai H (1999) Appl Phys A 69:305

    Article  Google Scholar 

  45. Marty L, Bouchiat V, Naud C, Chaumont M, Fournier T, Bonnot AM (2003) Nano Lett 3:1115–1118

    Article  Google Scholar 

  46. Bonnot AM, Mathis B, Moulin S (1993) Appl Phys Lett 63:1754–1756

    Article  Google Scholar 

  47. Kis A, Csany G, Sulvetat JP, Lee TN, Couteau E, Kulik AJ, Benôit W, Brugger J, Forro L (2004) Nat Mater 3:153

    Article  Google Scholar 

  48. Kociak M, Suenaga K, Hirahara K, Saito Y, Nakahira T, Iijima S (2002) Phys Rev Lett 89:155501:1–155501:4

    Google Scholar 

  49. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  MATH  Google Scholar 

  50. Kataura H, Kumazawa Y, Maniwa I, Umezu I, Suzuki S, Ohstua Y, Achiba Y (1999) Synth Met 103:2555

    Article  Google Scholar 

  51. Park BC, Jung KY, Song WY, O BH, Ahn SJ (2006) Adv Matter 18:95–98

    Article  Google Scholar 

  52. Stevens R, Nguyen C, Meyyapan M (2006) IEEE Trans Nanotechnol 5:255–257

    Article  Google Scholar 

  53. Wong SS, Harper JD, Lansbury PT Jr, Lieber CM (1998) J Am Chem Soc 120:603–604

    Article  Google Scholar 

  54. Cooper EB, Manalis SR, Fang H, Dai H, Minne ZC, Hunt T, Quate CF (1999) Appl Phys Lett 75:3566–3568

    Article  Google Scholar 

  55. Wade LA, Shapiro IR, Ma Z, Quake SR, Collier CP (2004) Nano Lett 4:725–731

    Article  Google Scholar 

  56. Yuzvinsky TD, Mickelson W, Aloni S, Begtrup GE, Kis A, Zettl A (2006) Nano Lett 6:2718–2722

    Article  Google Scholar 

  57. Nguyen CV, So C, Stevens RM, Li Y, Delziet L, Sarrazin P, Meyyapan M (2004) J Phys Chem B 108:2816–2821

    Article  Google Scholar 

  58. Collins PH, Arnold MS, Avouris P (2001) Science 292:706–709

    Article  Google Scholar 

  59. Chen L, Cheung CL, Ashby PD, Lieber CM (2004) Nano Lett 4:1725–1731

    Article  Google Scholar 

  60. Li J, Cassel AM, Dai H (1999) Surf Interface Anal 28:8–11

    Article  Google Scholar 

  61. Stevens RM, Nguyen CV, Meyyapan M (2004) IEEE Trans Nanobiosci 3:56–60

    Article  Google Scholar 

  62. Rotkin SV, Subramoney S (2005) Applied physics of carbon nanotubes. Springer, Berlin

    Book  Google Scholar 

  63. Yacobson BI, Brabec C, Maiti A, Bernholc J (1996) Phys Rev Lett 76:2511–2514

    Article  Google Scholar 

  64. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678–680

    Article  Google Scholar 

  65. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Phys Rev Lett 58:14013–14019

    Google Scholar 

  66. Poncharal P, Wang ZL, Ugarte D, Herr VD (1999) Science 283:1513–1516

    Article  Google Scholar 

  67. Solares SD, Esplandiu MJ, Goddard WA, Collier CP (2005) J Chem Phys B 109:11493–11500

    Article  Google Scholar 

  68. Kutana A, Giapis KP, Chen JY, Collier CP (2006) Nano Lett 6:1669–1673

    Article  Google Scholar 

  69. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Appl Phys A 69:255–260

    Article  Google Scholar 

  70. Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Appl Phys Lett 74:3803–3805

    Article  Google Scholar 

  71. Dietzel D, Marsaudon S, Aimé JP, Nguyen CV, Couturier G (2005) Phys Rev B 72:035445-1–035445-16

    Google Scholar 

  72. Aimé JP, Boisgard R, Nony L, Couturier G (1999) Phys Rev Lett 82:3388–3391

    Article  Google Scholar 

  73. Nony L, Boisgard R, Aimé JP (1999) J Chem Phys 111:1615–1627

    Article  Google Scholar 

  74. Garcia R, Pérez R (2002) Surf Sci Rep 47:197–301

    Article  Google Scholar 

  75. Lee SI, Howell SW, Raman A, Reifenberger R, Nguyen CV, Meyyappan M (2004) Nanotechnology 15:416–421

    Article  Google Scholar 

  76. Snow ES, Casavant MJ, Novak JP (2002) Appl Phys Lett 80:2002–2005

    Article  Google Scholar 

  77. Giessibl FJ (1997) Phys Rev B 56:16011–16015

    Article  Google Scholar 

  78. Dürig U (1999) Appl Phys Lett 75:467–473

    Article  Google Scholar 

  79. Dürig U (2000) New J Phys 2:5-1–5-12

    Google Scholar 

  80. Boisgard R, Aimé JP, Couturier G (2002) Appl Surf Sci 188:363–371

    Article  Google Scholar 

  81. Dubourg F, Aimé JP, Marsaudon S, Couturier G, Boisgard R (2003) J Phys Condens Matter 15:6167–6177

    Article  Google Scholar 

  82. Cleveland JP, Ancksykowsky B, Schmid AE, Elings VB (1998) Appl Phys Lett 72:2613–2615

    Article  Google Scholar 

  83. Rodriguez TR, Garcia R (2003)Appl Phys Lett 82:4821–4823

    Google Scholar 

  84. Anczykowski B, Cleveland JP, Krüger D, Elings V, Fuchs H (1998) Appl Phys A 66:S885–S889

    Article  Google Scholar 

  85. Moreno-Moreno M, Raman A, Gomez-Herrero J, Reifenberger R (2006) Appl Phys Lett 88:193108-1–193108-3

    Google Scholar 

  86. Albrecht TR, Grutter P, Horne HK, Rugar D (1991) J Appl Phys 69:668–673

    Article  Google Scholar 

  87. Couturier G, Boisgard R, Dietzel D, Aimé JP (2005) Nanotechnology 16:1346–1353

    Article  Google Scholar 

  88. Hembacher S, Giessibl FJ, Mannhart J (2004) Science 305:380–383

    Article  Google Scholar 

  89. Israelachvili JN (1992) Intermolecular and surface forces. Academic, New York

    Google Scholar 

  90. Dietzel D, Bernard C, Mariolle D, Iaia A, Bonnot AM, Aimé JP, Marsaudon S, Bertin F, Chabli A (2006) J Scan Probe Microsc 1:45–50

    Article  Google Scholar 

  91. Hafner JH, Cheung CL, Lieber CM (1999)Nature 398:761–762

    Google Scholar 

  92. Woolley AT, Guillemette C, Cheung CL, Housman DE, Lieber CM (2000) Nat Biotechnol 18:760–763

    Article  Google Scholar 

  93. Bunch JS, Rhodin TN, McEuen PL (2004) Nanotechnology 15:S76–S78

    Article  Google Scholar 

  94. Akita S, Nishijima H, Nakayama Y (2000) J Phys D Appl Phys 33:2673–2677

    Article  Google Scholar 

  95. Shapiro IR, Solares SD, Esplandiu MJ, Wade LA, Goddard WA Collier CP (2004) J Phys Chem B 108:13613–13618

    Article  Google Scholar 

  96. Solares SD, Matsuda Y, Goddard WA III (2005) J Phys Chem B 109:16658–16664

    Article  Google Scholar 

  97. Strus MC, Raman A, Han C-S, Nguyen CV (2005) Nanotechnology 16:2482–2492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marsaudon, S. et al. (2008). Carbon Nanotubes as SPM Tips: Mechanical Properties of Nanotube Tips and Imaging. In: Bhushan, B., Fuchs, H., Tomitori, M. (eds) Applied Scanning Probe Methods VIII. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74080-3_4

Download citation

Publish with us

Policies and ethics