Skip to main content

Colloid Facilitated Transport in Natural Porous Media: Fundamental Phenomena and Modelling

  • Chapter
Colloidal Transport in Porous Media

Abstract

Reactive transport phenomena, in particular, the transport of contaminants, are of fundamental interest in environmental sciences. The presence of hazardous chemicals in the subsurface environment has become an important driving force to develop reactive transport models capable to predict their fate (Dagan 1989; Jury and Roth 1990; Sardin et al. 1991; Knox et al. 1993; Appelo and Postma 1996; Lichtner et al. 1996). These models represent the natural porous medium as two types of phases: (i) immobile solid phases and (ii) mobile liquid (and/or gaseous) phases. Depending on the affinity to the respective phases, chemical species distribute between the different phases and the corresponding phase boundaries. Accordingly, the transport of chemicals is dictated by partitioning of the mobile dissolved species and the stationary species adsorbed to the solid phase. Distribution into the solid phases and interfacial reactions result in a reduction of the dissolved contaminant concentrations in the liquid phase, and accordingly in a slow-down of the contaminant spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam

    Google Scholar 

  • Birkeland PW (1984) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils. Principlesdynamics-modeling. Springer-Verlag, Berlin

    Google Scholar 

  • Buddemeier RW, Hunt JR (1988) Transport of colloidal contaminants in groundwater: Radionuclide migration at the Nevada Test Site. Appl Geochem 3:535–548

    Article  Google Scholar 

  • Champ DR, Merritt WF, Young JL (1982) Potential for the rapid transport of plutonium in groundwater as demonstrated by core column studies. In: W Lutze (ed), Scientific basis for radioactive waste management. Elsevier, pp 745–754

    Google Scholar 

  • Champlin JBF, Eichholz GG (1968) The movement of radioactive sodium and ruthenium through a simulated aquifer. Water Resour Res 4:147–158

    Google Scholar 

  • Corapcioglu MY, Jiang S (1993) Colloid-facilitated groundwater contaminant transport. Water Resour Res 29:2215–2226

    Article  Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, New York

    Google Scholar 

  • de Jonge H, Jacobsen OH, de Jonge LW, Moldrup P (1998) Particle-facilitated transport of prochloraz in undisturbed sandy loam soil columns. J Environ Qual 27(6):1495–1503

    Article  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation. Measurement, modelling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Fauré MH, Sardin M, Vitorge P (1996) Transport of clay particles and radioelements in a salinity gradient: experiments and simulations. J Contam Hydrol 21:255–267

    Article  Google Scholar 

  • Goldenberg LC, Magaritz M, Amiel AJ, Mandel S (1984) Changes in hydraulic conductivity of laboratory sand-clay mixtures caused by a seawater-freshwater interface. J Hydrol 70:329–336

    Article  Google Scholar 

  • Grolimund D, Borkovec M (1999) Long term release kinetics of colloidal particles from natural porous media. Environ Sci Technol 33(22):4054–4060

    Article  Google Scholar 

  • Grolimund D, Borkovec M (2001) Release and transport of colloidal particles in natural porous media. 1. Modeling. Water Resour Res 37(3):559–570

    Article  Google Scholar 

  • Grolimund D, Borkovec M (2005) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments. Environ Sci Technol 39(17):6378–6386

    Article  Google Scholar 

  • Grolimund D, Borkovec M (2006) Release of colloidal particles in natural porous media by monovalent and divalent cations. J Contam Hydrol 87(3–4):155–175

    Article  Google Scholar 

  • Grolimund D, Elimelech M, Borkovec M (2001a) Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 19(1–2):179–188

    Article  Google Scholar 

  • Grolimund D, Barmettler K, Borkovec M (2001b) Release and transport of colloidal particles in natural porous media. 2. Experimental results and effects of ligands. Water Resour Res 37(3):571–582

    Article  Google Scholar 

  • Grolimund D, Borkovec M, Barmettler K, Sticher H (1996) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ Sci Technol 30(10):3118–3123

    Article  Google Scholar 

  • Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32(22):3562–3569

    Article  Google Scholar 

  • Gschwend PM, Reynolds MD (1987) Monodisperse ferrous phosphaste colloids in an anoxic groundwater plume. J Contam Hydrol 1:309–327

    Article  Google Scholar 

  • Jones FO (1964) Influence of chemical composition of water on clay blocking of permeability. J Petrol Technol 16:441–446

    Google Scholar 

  • Jury WA, Roth K (1990) Transfer functions and solute movement trough soils: Theory and applications. Birkhäuser, Basel

    Google Scholar 

  • Kersting AB, Efurd DW, Finnegant DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59

    Article  Google Scholar 

  • Khilar KC, Fogler HS (1987) Colloidally induced fines migration in porous media. Rev Chem Eng 4(1&2):41–108

    Google Scholar 

  • Kjellander R, Marcelja S, Pashley RM, Quirk JP (1988) Double-layer ion correlation forces restrict calcium clay swelling. J Phys Chem 92:6489–6492

    Article  Google Scholar 

  • Knox RC, Sabatini DA, Canter LW (1993) Subsurface transport and fate processes. Lewis Publishers, Boca Raton

    Google Scholar 

  • Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. Adv Agron 66:121–193

    Google Scholar 

  • Lenhart JJ, Saiers JE (2003) Colloid mobilization in water-saturated porous media under transient chemical conditions. Environ Sci Technol 37(12):2780–2787

    Article  Google Scholar 

  • Lichtner PC, Steefel CI, Oelkers EH (eds) (1996) Reactive transport in porous media. Reviews in mineralogy, 34. The Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Muecke TW (1979) Formation fines and factors controlling their movement in porous media. J Petrol Technol 31(2):144–150

    Google Scholar 

  • Mungan N (1965) Permeability reduction through changes in pH and salinity. J Petrol Technol 17:1449–1453

    Google Scholar 

  • Nightingale HI, Bianchi WC (1977) Ground-water turbidity resulting from artificial recharge. Ground Water 15:146–152

    Article  Google Scholar 

  • Quirk JP (1994) Interparticle forces: A basis for the interpretation of soil physical behavior. Adv Agron 53:121–183

    Article  Google Scholar 

  • Quirk JP, Schofield RK (1955) The effect of electrolyte concentration on soil permeability. J Soil Sci 62:163–178

    Article  Google Scholar 

  • Reed MG (1972) Stabilization of formation clays with hydroxy-aluminium solutions. J Petrol Technol: 860–864

    Google Scholar 

  • Roy SB, Dzombak DA (1997) Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ Sci Technol 31(3):656–664

    Article  Google Scholar 

  • Roy SB, Dzombak DA (1998) Sorption nonequilibrium effects on colloid-enhanced transport of hydrophobic organic compounds in porous media. J Contam Hydrol 30:179–200

    Article  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 107:1–56

    Article  Google Scholar 

  • Saiers JE, Hornberger GM (1996) The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resour Res 32(1):33–41

    Article  Google Scholar 

  • Sardin M, Schweich D, Leij FJ, van Genuchten MT (1991) Modeling the nonequilibrium transport of linearly interacting solutes in porous media: a review. Water Resour Res 27(9):2287–2307

    Article  Google Scholar 

  • Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Coll Interf Sci 119:71–96

    Article  Google Scholar 

  • Sen TK, Shanbhag S, Khilar KC (2004) Subsurface colloids in groundwater contamination: A mathematical model. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 232(1):29–38

    Article  Google Scholar 

  • Shainberg I, Rhoades JD, Prather RJ (1980) Effect of low electrolyte concentration on clay dispersion and hydraulic conductivity of a sodic soil. Soil Sci Soc Am J 45:273–277

    Article  Google Scholar 

  • van de Weerd H, Leijnse A, van Riemsdijk WH (1998) Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions. J Contam Hydrol 32:313–331

    Article  Google Scholar 

  • van der Lee J, Ledoux E, de Marsily G, de Cayeux MD, van de Weerd H, Fraters B, Dodds J, Rodier E, Sardin M, Hernandez A (1994) A bibliographical review of colloid transport through the geosphere, European Commission, Luxembourg.

    Google Scholar 

  • Vinten AJA, Nye PH (1985) Transport and deposition of dilute colloidal suspensions in soils. J Soil Sci 36:531–541

    Article  Google Scholar 

  • Wiesner MR, Grant MC, Hutchins SR (1996) Reduced permeability in groundwater remediation systems: role of mobilized colloids and injected chemicals. Environ Sci Technol 30:3184–3191

    Article  Google Scholar 

  • Wu Q, Borkovec M, Sticher H (1993) On particle-size distribution in soils. Soil Sci Soc Am J 57:883–890

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grolimund, D., Barmettler, K., Borkovec, M. (2007). Colloid Facilitated Transport in Natural Porous Media: Fundamental Phenomena and Modelling. In: Frimmel, F.H., Von Der Kammer, F., Flemming, HC. (eds) Colloidal Transport in Porous Media. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71339-5_1

Download citation

Publish with us

Policies and ethics