Skip to main content

Arbuscular Mycorrhizal Fungi as a Determinant of Plant Diversity: in Search of Underlying Mechanisms and General Principles

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

Recently, several studies have reported that arbuscular mycorrhizal fungi (AMF) enhance plant diversity of grasslands by specifically stimulating the growth of subordinate, often rare plant species. The underlying mechanisms by which AMF promote growth of such mycorrhizal-dependent plant species are reviewed in this chapter. These mechanisms can be used to explain how AMF promote plant diversity. Here I show that a positive relationship exists between the mycorrhizal dependency of a plant and the amount of phosphorus obtained from AMF. In addition, a re-analysis of previously published material shows that interplant carbon transport through a mycorrhizal hyphal network, from one plant to another, is directed towards plant species with the highest mycorrhizal dependency. Plant species with high mycorrhizal dependency, therefore, receive much more resources from AMF than plant species with a lower dependency. The inclusion of these results in a conceptual model shows that the supply of additional resources by AMF can enable mycorrhizal-dependent plant species to establish and coexist with other plant species and this can explain how AMF enhance plant diversity. In some instances, AMF can also reduce diversity. This has been observed in tall grass prairies that are dominated by mycorrhizal-dependent plant species and in which the majority of plants had a low mycorrhizal dependency. That AMF influences on plant diversity depend on the plant species composition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarssen LW (1983) Ecological combining ability and competitive combining ability in plants: toward a general evolutionary theory of coexistence in systems of competition. Am Nat 122: 707–731

    Article  Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30: 1–67

    Article  CAS  Google Scholar 

  • Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977) A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J Ecol 65: 759–791

    Article  Google Scholar 

  • Allen EB, Allen MF (1990) The mediation of competition by mycorrhizae in successional and patchy environments. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 367–385

    Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Arines J, Vilarino A, Sainz M (1989) Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense) plants. New Phytol 112: 215–219

    Article  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Moss B, Tinker PB (eds) Endomycorrhiza. Academic Press, London, pp 378–389

    Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84: 71–82

    Article  Google Scholar 

  • Boerner RE.J, DeMars BG, Leicht PN (1996) Spatial patterns of mycorrhizal infectiveness of soils along a successional chronosequence. Mycorrhiza 6: 79–90

    Article  Google Scholar 

  • Brundrett MC, Abott LK (1995) Mycorrhizal fungus propagules in the jarrah forest. II Spatial variability in inoculum levels. New Phytol 131: 461–469

    Google Scholar 

  • Burkert B, Robson AD (1994) Zn uptake in subterranean clover (Trifolium subterraneum) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26: 1117–1124

    Article  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130: 259–265

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285: 1742–1744

    Article  PubMed  CAS  Google Scholar 

  • Cuenca G, De Andrade Z, Escalante G (1998) Diversity of Glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils Soil Biol Biochem 30: 711–719

    CAS  Google Scholar 

  • Daft MJ, El-Giahmi AA (1974) Effect of Endogone mycorrhizal on plant growth. VII. Influence of infection on the growth and nodulation in French Bean (Phaseolus vulgaris). New Phytol 73: 1139–1147

    Article  Google Scholar 

  • Dale MP, Causton DR (1992) The ecophysiology of Veronica chamaedrys V Montana and V. ofcinalis. III effects of shading on the phenology of biomass allocations–a field experiment. J Ecol 80: 505–515

    Article  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108: 183–200

    Google Scholar 

  • During HJ, Willems JH (1984) Diversity models applied to a chalk grassland. Vegetatio 57: 103–114

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10: 484–496

    Article  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122: 435–444

    Article  Google Scholar 

  • Ernst WHO, Van Duin WE, Oolbekking GT (1984) Vesicular arbuscular mycorrhiza in dune vegetation. Acta Bot Neerland 33: 151–160

    Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79: 119–125

    Article  CAS  Google Scholar 

  • Fitter AH (1990) The role and ecological significance of vesicular-arbuscular mycorrhizas in temperate ecosystems. Agric Ecosyst Environ 29: 257–265

    Article  Google Scholar 

  • Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impact on plant community structure. Can J Bot 73 [Suppl 11: 1301–1309

    Article  Google Scholar 

  • Gange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115: 85–91

    Article  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7: 616–622

    Article  Google Scholar 

  • Gerdemann JW (1975) Vesicular-arbuscular mycorrhizae. In: Torrey JG, Clarkson DT (eds.) The development and function of roots. Academic Press, New York, pp 575–591

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422

    Article  Google Scholar 

  • Grubb P (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol Rev 52: 107–145

    Article  Google Scholar 

  • Haas JH, Bar-Yosef B, Krikun J, Barak R, Markovitz T, Kramer S (1987) Vesicular-arbuscular-mycorrhizal-fungus infestation and phosphorus fertigation to overcome pepper stunting after methyl bromide treatment. Agron J 79: 905–910

    Article  Google Scholar 

  • Habte M, Manjunath A (1991) Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1: 3–12

    Article  Google Scholar 

  • Hartnett DC, Wilson WT (1999) Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology 80: 1187–1195

    Article  Google Scholar 

  • Hayman DS, Tavares M (1985) Plant growth responses to vesicular-arbuscular mycorrhiza. XV. Influence of soil pH on the symbiotic efficiency of different endophytes. New Phytol 100: 367–377

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPY (1998) Ploughing up the wood-wide web? Nature 394: 431

    Article  PubMed  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationships between mycorrhizal dependency and competitive ability of two tall grass prairie grasses. Can J Bot 67: 2608–2615

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1992) Relationship of mycorrhizal symbiosis, root- ing strategy and phenology among tall grass prairie forbs. Can J Bot 70: 1521–1528

    Article  Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999) Light-cap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554–557

    Article  PubMed  CAS  Google Scholar 

  • Huston MA (1979) General hypothesis of species diversity. Am Nat 113: 81–101

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I: Spread of hyphae and phosphorus inflow into roots. New Phytol 120: 371–380

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Hyphal transport over defined distances. New Phytol 120: 509–516

    Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropa [Suppl] 12: 56–64

    Google Scholar 

  • Jensen A (1984) Responses of barley, pea and maize to inoculation with different vesicular-arbuscular mycorrhizal fungi in irradiated soil. Plant Soil 78: 315–323

    Article  Google Scholar 

  • Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) Dynamics of vesicular arbuscular mycorrhizae during old field succession. Oecologia 86: 349–358

    Article  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034–2042

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135: 575–586

    Article  Google Scholar 

  • Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3: 106–113

    Article  Google Scholar 

  • Klironomos J (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology, Society for Microbial Ecology, Halifax, Canada pp. 845–851

    Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3: 137–141

    Article  Google Scholar 

  • Koide R (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117: 365–386

    Article  CAS  Google Scholar 

  • Law R (1988) Some ecological properties of intimate mutualisms involving plants. In: Davy AJ, Hutchings MJ, Watkinson AR (eds) Plant population ecology. Blackwell, Oxford, pp. 315–341

    Google Scholar 

  • Louis L, Lim G (1988) Differential response in growth and mycorrhizal colonization of soybean to inoculation with two isolates of Glomus clarum, in soils of different P availability. Plant Soil 112: 37–43

    Article  CAS  Google Scholar 

  • Marier MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80: 1180–1186

    Article  Google Scholar 

  • McGonigle TP (1988) A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Funct Ecol 2: 473–478

    Article  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular Mycorrhizae: Physiology and Function. Kluwer, Dordrecht, pp 3–18

    Google Scholar 

  • Miller RM, Smith CI, Jastrow JD, Bever JD (1999) Mycorrhizal status of the genus Carex (Cyperaceae).Am J Bot 86: 547–553

    PubMed  CAS  Google Scholar 

  • Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119: 586–592

    Article  Google Scholar 

  • Morton JB, Bentivenga SP, Bever JD (1995) Discovery, measurement and interpretation of diversity in symbiotic endo-mycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73 [Suppl]: 25–32

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82: 805–814

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5: 496–501

    Article  PubMed  CAS  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70: 199–209

    Google Scholar 

  • Powell CL, CLark GE, Verberne NJ (1982) Growth response of four onion cultivars to isolates of VA mycorrhizal fungi. NZ J Agric Res 25: 465–470

    Article  CAS  Google Scholar 

  • Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121: 165–170

    Article  CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129: 611–618

    Article  Google Scholar 

  • Read D (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Ricklefs RW (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111: 376–381

    Article  Google Scholar 

  • Roldan-Fajardo BE (1994) Effect of indigenous arbuscular mycorrhizal endophytes on the development of six wild plants colonizing a semi arid area in south-east Spain. New Phytol 127: 115–121

    Article  Google Scholar 

  • Rosendahl S, Rosendahl CN, Sochting U (1990) Distribution of VA mycorrhizal endophytes amongst plants of a Danish grassland community. Agric Ecosyst Environ 29: 329–336

    Article  Google Scholar 

  • Sanders IR, Fitter AH (1992) Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland. Mycol Res 96: 415–419

    Article  Google Scholar 

  • Sanders IR, Koide RT (1994) Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic old-field annuals. Funct Ecol 8: 77–84

    Article  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188: 199–209

    Article  CAS  Google Scholar 

  • Sharma AK, Johri BN, Gianinazzi S (1992) Vesicular-arbuscular mycorrhizae in relation to plant disease. World J Microbiol Biotechnol 8: 559–563

    Article  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86: 1060–1064

    Article  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147: 357–366

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbioses, 2nd edn. Academic Press, London

    Google Scholar 

  • Sokal, RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics. Freeman, New York

    Google Scholar 

  • Stahl PD, Smith WK (1984) Effects of different geographic isolates of Glomus on the water relations of Agropyron smithii. Mycologia 76: 261–267

    Article  Google Scholar 

  • Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J Ecol 85: 181–191

    Article  Google Scholar 

  • Streitwolf-Engel R, van der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal plant growth. Ecology 82: 2846–2859

    Article  Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton Univ Press, Princeton

    Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78: 81–92

    Article  Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. Univ Chicago Press, Chicago, pp 13–25

    Google Scholar 

  • Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris Suillus bovinus and Pinus sylvestris Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44: 499–513

    CAS  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, USA, pp 5–25

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998a) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72

    Article  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1999) “Sampling effect” a problem in biodiversity manipulation? A reply to David A Wardle. Oikos 87:408–410

    Google Scholar 

  • van der Heijden MGA (1999) Ecological significance of mycorrhizal diversity: on the role of arbuscular mycorrhizal fungi as a determinant of plant community structure and diversity, chapter 3. Ph-D thesis, Basel, Switzerland

    Google Scholar 

  • Walker C, Mize CW, McNabb HS (1982) Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot 60: 2518–2529

    Article  Google Scholar 

  • Wardle DA (1999) Is sampling effect a problem for experiments investigating biodiversity-ecosystem function relationships. Oikos 87: 403–407

    Article  Google Scholar 

  • West HM (1996) Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J Ecol 84: 429–438

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant response to mycorrhizal colonization in tallgrass prairie. Am J Bot 85: 1732–1738

    Article  PubMed  CAS  Google Scholar 

  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogellange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108: 1519–1525

    PubMed  CAS  Google Scholar 

  • Zobel M, Moora M, Haukioja E (1997) Plant coexistence in the interactive environment: arbuscular mycorrhiza should not be out of mind. Oikos 78: 202–208

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Der Heijden, M.G.A. (2002). Arbuscular Mycorrhizal Fungi as a Determinant of Plant Diversity: in Search of Underlying Mechanisms and General Principles. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics